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ABSTRACT: Stochastic orbital techniques offer reduced computational
scaling and memory requirements to describe ground and excited states at the
cost of introducing controlled statistical errors. Such techniques often rely on
two basic operations, stochastic trace estimation and stochastic resolution of
identity, both of which lead to statistical errors that scale with the number of
stochastic realizations (Nξ) as N 1 . Reducing the statistical errors without
significantly increasing Nξ has been challenging and is central to the
development of efficient and accurate stochastic algorithms. In this work, we
build upon recent progress made to improve stochastic trace estimation
based on the ubiquitous Hutchinson’s algorithm and propose a two-step approach for the stochastic resolution of identity, in the
spirit of the Hutch++ method. Our approach is based on employing a randomized low-rank approximation followed by a residual
calculation, resulting in statistical errors that scale much better than N 1 . We implement the approach within the second-order
Born approximation for the self-energy in the computation of neutral excitations and discuss three different low-rank approximations
for the two-body Coulomb integrals. Tests on a series of hydrogen dimer chains with varying lengths demonstrate that the Hutch+
+-like approximations are computationally more efficient than both deterministic and purely stochastic (Hutchinson) approaches for
low error thresholds and intermediate system sizes. Notably, for arbitrarily large systems, the Hutchinson-like approximation
outperforms both deterministic and Hutch++-like methods.

1. INTRODUCTION
Studying the electronic structure of molecular systems and
materials is essential for understanding, predicting, and
controlling their properties. An especially intriguing aspect
involves the calculation of excited electronic states, as they play a
crucial role in photochemical transformations,1,2 energy storage
and transfer,3−5 and light harvesting.6 While exact many-body
techniques like full configuration interaction (FCI) and tensor
network-based methods offer accurate results for simplified
problems, they are constrained by computational costs limiting
their use to small systems. In the realm of extended systems,
approximations such as mean-field time-dependent density
functional theory (TDDFT)7−10 or time-dependent Hartree−
Fock (TDHF),11−13 as well as methods like coupled cluster
within the equations of motion formalism (EOM-CC),14,15 are
commonly used for calculating excited states. Additionally,
techniques based on Green’s function (GF) methods, such as
GW16−21 and GF222,23 closures, have proven effective for
computing excited states in both extended materials and
molecular systems.
Within the family of GF techniques, we will explore a method

known as GF2 or the second-order Born approximation that
approximates electronic correlations by employing a second-
order expansion of the self-energy with bare Coulomb

interactions.24,25 Previous evaluations of the accuracy of GF2
have shown favorable comparisons with other methods such as
configuration interaction with singles and perturbative doubles
(CIS(d)), demonstrating notably precise results for excited
states, even for those with charge transfer character.25 However,
one drawback of the GF2 method is its computationally
intensive nature compared to mean-field-based techniques, with
a complexity of O(N5), where N represents the number of basis
functions used to describe the system. To address this steep
scaling, in ref 24, we utilized the stochastic resolution of the
identity (sRI)26,27 to decouple the 4-index electron repulsion
integrals (ERI) present in the self-energy. This led to a stochastic
real-time implementation of GF2, referred to as stochastic TD-
GF2 (or sTD-GF2), which offers a computational scaling of
O(N3) for computing excited states, similar to a mean-field
calculation.
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The enhanced computational efficiency achieved through the
utilization of stochastic techniques is accompanied by the
introduction of a statistical error, which can be managed by
increasing the number of samples or stochastic orbitals.
Particularly, when employing the stochastic resolution of the
identity to decouple the ERIs as in sTD-GF2, the convergence of
the statistical error is relatively slow, scaling as O(Nξ

−1/2), where
Nξ represents the number of stochastic orbitals utilized to
approximate the sRI. This convergence behavior resembles that
of stochastic trace estimators based on the Hutchinson
algorithm.28,29 For the latter, enhancements can be achieved
by combining low-rank approximations to the matrix whose
trace is calculated with the stochastic estimation of the residual.
This approach, termedHutch++,30 has demonstrated significant
success in enhancing error convergence in the stochastic
estimation of the trace of positive semidefinite matrices,
particularly when they exhibit a mild low-rank structure.
In this study, we present a method akin to Hutch++ for the

stochastic resolution of identity and investigate its efficacy in
comparison to the traditional Hutchinson-like approach for
excited states of hydrogen dimer chains. Drawing inspiration
from Hutch++, our proposed method entails decomposing the
computation into a low-rank component and a residual. To
achieve this, we employ a randomized singular value
decomposition (SVD) technique on the 4-index Electron
Repulsion Integrals (ERI) and subsequently select stochastic
orbitals to approximate the residuals. In Section 2, we offer an
overview of the stochastic TD-GF2 method, elaborating on its
theoretical underpinnings, and extend the Hutch++ approx-
imation for the resolution of identity. In Section 3, we delve into
various strategies for constructing a Hutch++-like approxima-
tion to the sRI and rigorously evaluate the performance against
deterministic TD-GF2 and the Hutchinson-like approach.
Finally, in Section 4, we provide a summary of our findings,
discussing the implications and potential avenues for future
research.

2. THEORY
This section provides an overview of the real-time second-order
Green’s function theory for computing neutral excitations (TD-
GF2) and its stochastic implementation (sTD-GF2), along with
the presentation of Hutch++-like variants of the resolution of
identity. For a detailed derivation of TD-GF2 and sTD-GF2,
readers are referred to refs 25 and 24, respectively.

2.1. Deterministic Real-Time GF2 Theory (TD-GF2). In
the TD-GF2 method, we consider a generic many-body
Hamiltonian coupled to an external electric field, expressed in
second quantization as

= + | +† † † †H h a a ij kl a a a a t a a1
2

( ) ( )
ij

ij i j
ijkl

i k l j
ij

ij i j

(1)

where i, j, k, and l denote indices of a general basis, aî† and aî
represent creation and annihilation operators for an electron in
orbital χi, respectively, hij are the matrix elements of the one-
body interactions, (ij|kl) are thematrix elements of the two-body
interactions, corresponding to 4-index electron repulsion
integrals:

| =
| |

ij kl
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d d

i j k l1 1 2 2

1 2
1 2

(2)

The last term in eq 1 represents the external driving force, Δij(t)
= E(t) · μij, where E(t) is a time-dependent perturbation that
couples the system with an external electric field, through its
transition dipole moment μij defined by

= r r r r( ) ( )dij i j (3)

Under the adiabatic approximation, where the system responds
instantaneously to external stimuli, the equation of motion for
the electronic density matrix ρ(t) is given by24,25

= [ ] +

[ ] +
†

i
t

t t t t t

t t

S F

F S

d
d

( ) ( ( ) ( )) ( ) ( )

( ( ) ( ))

1 ad

ad 1 (4)

where S is the basis overlap matrix, F[ρ(t)] is the Fock operator
with matrix elements given by

[ ] = + | |

+

F t h ij kl t ik jl t

t

( ) ( ) ( )
1
2

( ) ( )

( )

ij ij
kl

kl
kl

kl

ij (5)

and Σ̃ad is the adiabatic GF2 self-energy. From here on, we will
use the eigenstates of the Fock operator (eq 5) with Δij(t) = 0 as
a basis, which simplifies the computation of the self-energy. In
this basis and considering a closed-shell system, the matrix
elements of Σ̃ad are given by

Figure 1. Singular values of (a) the Coulomb matrix V, (b) its inverse V−1, and (c) the reshaped 3-index K-tensor K for three representative hydrogen
dimer chains. The Coulomb matrix and its inverse were computed using the cc-PVDZ-RI auxiliary basis set, while the K-tensor utilized the minimal
STO-3G basis as the main basis and cc-PVDZ-RI as the auxiliary basis.
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In the above equation, δW̃imjn
R are matrix elements of the GF2

retarded screened Coulomb interactions taken in the zero-
frequency limit:

=
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In the equation above, f(ε) is the Fermi function and {ε} are
GF2 quasiparticle energies obtained as in ref 31. The dynamics
of ρ(t), obtained by integrating eq 4, is used to compute the
frequency-dependent absorption spectrum (photoabsorption
cross-section) σ(ω) of the system as

[ ]
=

t Tr t t( )
1

3
d e ( ( ) ( ))

d x y z

i t
d

, ,
0

(8)

In the above equation, d = x, y, z are the spatial components of
the dipole moment and γ ≪ 1 is a small dimensionless parameter
that scales the amplitude of the external electric field. The
computational cost of the TD-GF2 method is primarily
determined by the expense of evaluating the self-energy (eq
6), which scales as O(N5) with the system size.
2.2. Stochastic Real-Time GF2 Theory (sTD-GF2). To

reduce the scaling of the TD-GF2 method from O(N5) to
O(N3), the 4-index ERI appearing in the self-energy (eq 6) are
decoupled using the stochastic resolution of the identity (sRI),
which corresponds to the average of the outer product of Nξ
stochastic orbitals θ, defined as vectors with random elements
±1, in the limit of infinite stochastic orbitals:

= =
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µ

µ
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where ⟨··· ⟩ξ represents the average over the set {θξ} of
uncorrelated stochastic orbitals θξ, with ξ = 1, 2,...,Nξ. Using the
sRI, the 4-index ERI can be approximately written as26
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ij kl
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We use capital indexes A and B to refer to the auxiliary basis with
Naux elements. In eq 10, Rij = ∑ A

Naux(ij|A) ∑B
Naux VAB−1/2θB, and (ij|

A) and VAB are 3-index and 2-index ERI, given by

| =
| |

ij A d
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and
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d dAB

A B1 2

1 2
1 2
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respectively.
The sRI can be seen as applying the Hutchinson method for

estimating the trace of a certain matrix (defined for each ERI).
Specifically, for a matrix with elements defined asDPQ = ∑AB (ij|
A)VAP−1/2 VQB−1/2(B|kl), the Hutchinson estimator of its trace is ⟨Rij
Rkl⟩ξ.
To obtain the self-energy, we insert the 4-index ERI given by

eq 10 into eq 7 and use it to approximate the self-energy in eq 6.
This yields the following expression for the self-energy:

t T R R R R R R t( ) 1
2

(2 ) ( )ij
kqmn

kq im qk jn qk jk qn mn
ad

,

(13)

where

=
( ) ( )

T
f f

i
lim

k q

k q
kq

0 (14)

and the prime symbols over the R tensors indicate that different
sets of stochastic orbitals are employed to avoid correlations.
When using eq 13 to approximate the self-energy, we will refer to
the method as the Hutchinson-like approximation of TD-GF2.
Note that the scaling of the self-energy in the Hutchinson-like

approximation (eq 13) isO(Nξ
2N3). However, we have observed

that the error per electron in many quantities is independent of
the system size, leading to an effective O(N3) scaling24 (this is
further tested in Section 3). Such system size independent
behavior of Nξ for a given error has been observed in stochastic
computations of the ground state energy per electron,26,27,32

charged excitation energies31 in molecules and nanostructures,
and the photoabsorption cross-section per electron, which we
study further below.
2.3. Hutch++-like Approximations for TD-GF2. Hutch+

+30 is a method for estimating the trace of positive semidefinite
matrices with mild low-rank structure. The method consists of
building a stochastic low-rank approximation of the matrix by
performing a randomized SVD with a test matrixW (consisting
of Nξ/2 stochastic vectors as columns) as it is shown in
Algorithm 1. Then, a deterministic trace is performed on the
low-rank Alow‑rank, while the residual is estimated stochastically
(Hutchinson algorithm28,29) using the residual stochastic
vectors, corresponding to the columns of G (see Algorithm 1).
The advantage of the Hutch++ algorithm over the direct use of
the sRI (Hutchinson algorithm) is that the convergence of the

statistical error is faster than ( )O N 1 .

Following the logic of the Hutch++ method to accelerate the
convergence of stochastic trace estimations, we have developed
three Hutch++-like variants of the sTD-GF2 approach. As
before, we rewrite the 4-index ERI in terms of 3-index and 2-
index ERIs:

| | |ij kl ij A V B kl( ) ( ) ( )
AB

N

AB
1

aux

(15)
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However, instead of using the stochastic resolution of identity
given by eq 9, we first perform a randomized low-rank
approximation to V, V−1, or KijQ = ∑A

Naux(ij|A)VAQ−1/2, and compute
the residuals stochastically. The latter is typically used to
approximate the ERIs deterministically as (ij|kl) = ∑Q

NauxKijQ KklQ

(this approximation is called density fitting and it will be used
here to perform deterministic computations). We will refer to
these Hutch++-like variants of sTD-GF2 as H++ on V, H++ on
V−1, and H++ on K, respectively.
Before we describe the different low-rank approximations, we

provide in Figure 1 analysis of the singular values of the
CoulombmatrixV, its inverseV−1, and the reshaped tensorK for
hydrogen dimer chains of varying lengths (see below in Section
3 more detail on the calculations). In all instances, the rank
grows like O(N), indicating that any truncation based on low-
rank approximation will inherently vary with system size. This
variability might result in an increase in the method’s scaling
with system size, compared to the purely stochastic approach
(such as the Hutchinson-like sTD-GF2). Nevertheless, the
reduction in computational overhead due to accelerated error
convergence might offset the scaling increase within a specific
parameter range. This aspect will be investigated numerically in
Section 3.

2.3.1. Low Rank Approximations Based on V and V−1. For
the H++ on V and H++ on V−1 variants, the 4-index ERI can be
expressed as a sum of low-rank and residual terms:

| +ij kl N M R R( )
r

N

ij
r

kl
r

ij kl

rank

(16)

where the tensors elements Nijr , Mkl
r , and Rijξ are defined in

Appendix A. The first term in eq 16 is a randomized low-rank
approximation of the ERI and the second term corresponds to
the residual, which is estimated stochastically.
The scaling of computing the Nijr and Mkl

r tensors is
O(NrankN3), where Nrank is the rank of the stochastic low-rank
approximation, which coincides with the number of stochastic
orbitals used to build the test matrix W (see Algorithm 1), i.e.

=N
N

rank 2
. Note that in principle, the fraction of stochastic

orbitals used to generate the randomized SVD can be chosen to
be different. However, we chose =N

N
rank 2

throughout this

work, while the remaining N

2
stochastic orbitals are employed to

estimate the residual (the residual test matrix is labeled W′ in
Algorithm 1).
Using eq 16 to evaluate the ERIs, the self-energy given by eq 6,

can be expressed as
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1
2

1
2

1
2 ,

rank

rank

rank

(17)

where Tkq is defined in eq 14.
The first term on the right-hand side of eq 17 corresponds to

the randomized low-rank approximation of the self-energy, with
a scaling of O(Nrank

2 N3). The next two terms are mixed
stochastic and low-rank, with a scaling of O(Nrank N3). The last
term in eq 17 is purely stochastic, scaling as O(N3). As shown
above in Figure 1, the low-rank structure of the matrices
becomes less pronounced for larger systems, implying that Nrank
does depend on N. However, we expect Nrank < N, so O(N3) <
O(Nrank

2 N3) < O(N5), corresponding to the scaling of the
Hutchinson-like, Hutch++-like, and deterministic TD-GF2
approximations, respectively. Furthermore, it is worth noting
that computing the self-energy (eq 17) is the most expensive
step in the algorithm, as shown in Figure S1 in the Supporting
Information.
2.3.2. Low Rank Approximation Based on K.The ERIs using

the H++ on K variant are given by

| = +

+ +

ij kl N M R R

R R R R

( ) ( )

( )

r

N

ij
r

kl
r

ij kl

ij kl ij kl

low rank

low rank

rank

(18)

where all tensor elements are defined in Appendix A. The first
term in eq 18 is a randomized low-rank approximation of the
ERI, the second and third terms are mixed stochastic and low-
rank, and the last term corresponds to the stochastic residual.

Using eq 18 to approximate the ERIs in the self-energy given by
eq 6 results in the H++ on K variant of sTD-GF2.
Despite the common ingredients with Hutch++, all of the

sTD-GF2 variants proposed here (H++ on V, H++ on V−1, and
H++ on V) are substantially different from the Hutch++ trace
estimator since using the deterministic subspace for computing
the low-rank approximations changes the scaling of the method.
Therefore, the implications for their performance must be
tested. In the next section, we numerically analyze the efficiency
of the proposed schemes.

3. RESULTS
To test the performance of the Hutch++-like variants of sTD-
GF2, we consider hydrogen dimer chains of varying lengths as
model systems. The hydrogen chains, consisting of hydrogen
molecules with a bond length of 0.74 Å and intermolecular
distance of 1.26 Å, were aligned along the direction of the
external electric field. To represent the electric field, we
employed a Gaussian pulse centered at t0 = 0.2 fs with an
amplitude γE0 = 0.02 V/Å and variance of 0.005 fs. The
regularization parameter in eq 7 was set to η = 0.01 and the
inverse temperature to β = 50. To perform the Fourier transform
in eq 8, we have added the damping function e−Γt, with a decay
rate Γ = 1/(0.1tmax), being tmax the total propagation time.
Throughout this work, we used theminimal STO-3G basis set as
the main basis and the cc-PVDZ-RI as the auxiliary basis for
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decoupling the ERIs. All ERIs were computed using the Psi4
software.33

First, we aim to illustrate the congruence between the
absorption spectra as described by eq 8, calculated through the
Hutchinson-like (sTD-GF2) and Hutch++-like variants of sTD-
GF2, with the deterministic outcome (TD-GF2). To achieve
this, we constrain the dynamics generating σ(ω) to a duration of
6 fs, resulting in a relatively broad spectral characteristic. Figure
2 exhibits the absorption spectra for two hydrogen dimer chains
of varying lengths, chosen as representative examples. Within
the stochastic outcomes’ margin of noise, all spectra
demonstrate a notable consistency with the deterministic TD-
GF2 outcome. Note that the curves have been shifted for clarity.
Next, we shift our focus to examining the statistical error and

evaluating its correlation with the number of stochastic orbitals
and computational time. Figure 3 presents the average statistical
error per hydrogen dimer across three typical chains of differing
lengths, employing the Hutchinson sTD-GF2 method and its
Hutch++-like variations over varying computational durations.
The growth in computational time within a specific method
arises from increasing Nξ. The error metric was determined as
the mean of the standard error−defined as the ratio between the
standard deviation (STD) and the number of independent
stochastic runs (n)− of the photoabsorption cross-section:

= [ ]
n

Error
STD ( )

(19)

where, ··· = ···
N

N1 is the average over theNω discretized

frequencies, [ ] = nSTD ( ) ( ( ) ( ) ) /i
n

i
2 , and i

= 1,..., n is the index that labels the independent stochastic runs,
taken to be n = 6. We confine our analysis to the scientifically
significant interval of 10−30 eV, as this is the range in which
significant absorption peaks are observed for hydrogen dimer
chains (see Figure 2).
We observe that across all instances, the convergence rate of

the statistical error remains roughly consistent with that of the
standardHutchinsonmethodwhen utilizing a limited number of
stochastic orbitals. However, it accelerates as the contributions
from the low-rank component become more pronounced due to
the escalation of Nξ (remembering that Nξ governs the rank of
this component). Note that, although the singular values of the
K tensor exhibit the fastest decay among the matrices analyzed
in Figure 1 (which results in a rapid error decay as a function of
the number of stochastic orbitals Nξ, as shown in Figure 3a−c),
the overhead added by the 16 terms required to compute the
square of the ERIs (see eq 18) appearing in the self-energy (eqs 6
and 7)) make the H++ onK slower than H++ on V and H++ on
V−1 (see Figure 3d−f), for the range of parameters considered in
Figure 3. Notably, among all Hutch++ variations, the most rapid
convergence (with respect to the computational time) occurs
when employing randomized Singular Value Decomposition
(SVD) on the Coulomb matrix V. Consequently, we will
exclusively focus on this variant within the sTD-GF2 method,
alongside the standard Hutchinson and deterministic ap-
proaches, for the remainder of the analysis.
Figure 4 illustrates the computational scaling with the system

size for the deterministic TD-GF2, Hutchinson sTD-GF2, and
the H++ variant applied to V within sTD-GF2 across low,
moderate, and high error thresholds. The deterministic
approach scales formally as O(N5), the Hutchinson sDT-GF2
scales as O(N3) for a fixed error, and the Hutch++ sTD-GF2 as
O(Nrank

2 N3) for a fixed error. Empirically it scales as O(N4)
within the system size range examined in Figure 4. This is due to
the dependence of Nrank on N. These computational scalings
result in a crossover between the preferred method, contingent
upon the specified error threshold, and the system size.
Specifically, as depicted in Figure 4a, the H++ variant on V
within sTD-GF2 demonstrates superior efficiency compared to
the Hutchinson version for systems containing up to
approximately ∼350 electrons (estimated from the extrapolated
data) for low error threshold (1 × 10−4/Ne in the error per
electron). Conversely, as demonstrated in Figure 4c, under a
high error threshold (1 × 10−3/Ne), the Hutchinson algorithm
outperforms the H++ variant on V for a broader spectrum of
system sizes (NH > 20). Figure 4b depicts a scenario at
intermediate error thresholds.
Additionally, it is worth noting that as error thresholds

decrease, both the Hutchinson and H++ variants applied to V
within sTD-GF2 begin to show disadvantages compared to the
purely deterministic approach (TD-GF2). This underscores the
nontrivial nature of balancing error thresholds and system size
when determining the optimal parameter range for the most
efficient utilization of the H++ variant on V. In Figure 4, the
background color signifies the combination of error threshold
and system size where each real-time GF2 method (green for
TD-GF2, red for sTD-GF2, and blue for the H++ variant on V
within sTD-GF2) exhibits the highest computational efficiency.

Figure 2. Absorption spectra of representative hydrogen dimer chains,
with (a) H20 and (b) H100, were analyzed using deterministic (TD-
GF2), Hutchinson-stochastic (sDT-GF2), and mixed low-rank Hutch+
+-like variations of sTD-GF2 applied to the Coulomb matrix (H++ on
V), its inverse (H++ on V−1), and the 3-index tensor K (H++ on K). In
all cases, the STO-3G basis set was utilized as the primary basis, with cc-
PVDZ-RI employed as the auxiliary basis. The intensity average error
per electron was set to 10−3, with units consistent with the intensity.
The curves have been vertically shifted for clarity.
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Although we focused our analysis on 1D dimer hydrogen
chains, we found that the low-rank structure of the Coulomb
matrices is weakly sensitive to the spatial arrangement of the
atoms for a given type of interaction (see Figure S2 in the
Supporting Information for an analysis of the singular values
decay of V, V−1, and K in 2D hydrogen arrays), suggesting that
the performance of the H++ on V can be equivalent for systems
of higher dimensionality (recall that we do not take advantage of
the sparsity of the Coulomb integrals).
Broadly speaking, the H++ variant applied to V within sTD-

GF2 proves to be more efficient than both purely deterministic
and purely stochastic computations for intermediate system
sizes and low to moderate error thresholds. For instance, this
efficiency is evident within the range of approximately ∼100 to
350 electrons (100−350 STO-3G basis functions and 1400−
4900 cc-PVDZ-RI basis functions) under an error threshold of
10−4 per electron and ∼48 to 110 electrons (48−110 STO-3G
basis functions and 672−1540 cc-PVDZ-RI basis functions)
under an error threshold of × 101

2
3 per electron, as calculated

according to eq 19.

4. CONCLUSIONS
We have devised a series of Hutch++-inspired iterations of the
stochastic real-time GF2 approach tailored for computing
neutral excitations. The Hutch++ methodology involves
breaking down the computation of the self-energy and the
ERIs into a randomized low-rank segment and a stochastically
estimated residual. Our work has demonstrated that employing a
randomized Singular Value Decomposition technique on the
Coulomb matrix V to obtain the low-rank approximation to the
ERIs (H++ on V) yields the swiftest balance between statistical
error and computational time. Nevertheless, the efficiency of

such an approximation diminishes for large systems due to its
scaling of O(Nrank

2 N3). However, this efficiency threshold shifts
toward larger system sizes when the predetermined statistical
error threshold is set to be small.
Generally, the H++ onV proves to bemore efficient than both

deterministic and stochastic sTD-GF2 methods for scenarios
involving low error thresholds and intermediate system sizes.
However, the applicability of this parameter range is limited.
Consequently, for large system sizes, the Hutchinson sTD-GF2
approach is poised to outperform both the deterministic and
Hutch++ variants, owing to its O(N3) scaling.
The Hutch++-inspired variations of the sTD-GF2 method

serve as valuable additions to the arsenal of noise reduction
strategies employed in electronic structure calculations. These
variants synergize effectively with other techniques, such as the
range-separated sRI,27 which takes advantage of the sparsity of
the ERIs by partitioning them into distinct categories−large
contributions, calculated deterministically, and small contribu-
tions, computed stochastically− This partition provides an
alternative avenue for enhancing the rate of error convergence in
stochastic applications based on the resolution of identity. As
such, it can be applied to other stochastic electronic structure
methods based on the stochastic resolution of identity, such as
stochastic coupled cluster,34 auxiliary-field quantum Monte
Carlo,35 and GF2 methods for computing the ground state
correlation energy32 and charged excitations.31

■ A EXPRESSIONS FOR TENSOR ELEMENTS

A.1. H++ on V and H++ on V−1

The tensor elements for computing the low-rank terms in eq 16
are given by

Figure 3. Error per electron in computing the absorption spectra of representative hydrogen dimer chains, namely H20, H50, and H100, as a function of
(a−c) the number of stochastic orbitals (Nξ) and (d−f) computational effort (time) using various stochastic methods. For the H++ on V, V−1, and K
methods, N

2
stochastic orbitals were used to perform the randomized QR decomposition and N

2
were used to estimate the residuals. For the

Hutchinson method, all theNξ stochastic orbitals were employed. Computational time increases with decreasing error as a result of the increase in the
number of stochastic orbitals,Nξ. In all cases, the STO-3G basis set was utilized as the main basis, and cc-PVDZ-RI was employed as the auxiliary basis.
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for the H++ on V and H++ on V −1 methods. Here, QPr is
obtained following Algorithm 1, with A = V or V−1. For both
methods, the residual tensors in eq 16 are given by Rijξ = ∑A

Naux (ij|
A) LAξ with LAξ = ∑P

Naux VAP−1/2 GPξ, where GPξ is obtained following
Algorithm 1.
A.2. H++ on K
The tensor elements in eq 18 are given by

[ ] =++N Qij
r

ij r
KH on

( ) (22)

and
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In the above equations,Q is obtained as in Algorithm 1, for A =
K with reshaped elements KmnQ → K(mn)Q, CrP = ∑mn

N Qr(mn)T

K(mn)P, and DPs = ∑mn
N KP(mn)† Q(mn)s. The low-rank stochastic

tensor, (Rijξ)low‑rank, appearing in eq 18, is given by

=R K W( )ij
Q

N

ij Q Q
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where W is the stochastic test matrix, as in Algorithm 1. The
stochastic tensor, (Rijξ), appearing in the same equation, takes the
form:

=R K Wij
Q

N

ij Q Q( )
res

aux

(26)

with K(ij)Q
res = K(ij)Q − K(ij)Q

low‑rank.
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