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ABSTRACT: We present a real-time second-order Green’s
function (GF) method for computing excited states in molecules
and nanostructures, with a computational scaling of O(Ne

3), where
Ne is the number of electrons. The cubic scaling is achieved by
adopting the stochastic resolution of the identity to decouple the 4-
index electron repulsion integrals. To improve the time propagation
and the spectral resolution, we adopt the dynamic mode
decomposition technique and assess the accuracy and efficiency
of the combined approach for a chain of hydrogen dimer molecules
of different lengths. We find that the stochastic implementation
accurately reproduces the deterministic results for the electronic
dynamics and excitation energies. Furthermore, we provide a
detailed analysis of the statistical errors, bias, and long-time
extrapolation. Overall, the approach offers an efficient route to investigate excited states in extended systems with open or closed
boundary conditions.

1. INTRODUCTION
The computation of excited state properties is a very active
field in the molecular and materials sciences.1−12 The
importance of such calculations is accentuated by the wide
range of technological applications that are derived from a
deeper understanding of excited state properties, as well as the
fundamental physics and chemistry that can be learned from
the development of methods to compute them. In molecular
systems, time-dependent density functional theory13−16

(TDDFT) or wave function-based methods, such as time-
dependent Hartree−Fock17−19 (TDHF) and coupled cluster
within the equation of motion formalism (EOM-CC),20,21 are
commonly used to compute excited state energies. However, it
is challenging to find a balance between accuracy and
efficiency. While methods such as TDDFT and TDHF can
handle the computation of the excited state properties of
systems containing hundreds of electrons, their accuracy highly
depends on the system or system−functional combination, in
the case of TDDFT. By contrast, while wave-function-based
methods that include electron correlation beyond the level of
Hartree−Fock (e.g., EOM-CC) are usually more accurate,
their inherent steep computational cost restricts computations
to systems with a few atoms only.20−22

Alternative methods traditionally used in condensed matter
theory, such as many-body perturbation theory within the
Green’s function (GF) formalism,23−25 have also proven to be
useful to describe excited states. Two of the most popular
approximations are the GW method,26−31 a first-order

approximation to the self-energy in the screened Coulombic
interaction (W) and the GF2 method,32,33 in which the self-
energy is approximated to second-order in the bare Coulombic
interaction, allowing for the inclusion of dynamical exchange
correlations. The GW and the GF2 closures have been
successfully used to compute charged excitations (quasiparticle
energies) in molecules and bulk systems26,34−36 and have been
extended to describe neutral excitations using time-dependent
approaches.6,37 Attaccalite et al.38 showed that the time-
dependent GW approach is equivalent to the well-known
Bethe−Salpeter equation (BSE) in the adiabatic, linear-
response limit. Similarly, Dou et al.6 derived a Bethe−
Salpeter-like equation with a second-order kernel (GF2-BSE)
and tested the approach for a set of molecules, finding that the
GF2-BSE approach is comparable to configuration interaction
with singles and perturbative doubles [CIS(D)], with
encouraging results for low-lying excited states, particularly
for charge-transfer excitations.6 However, the O(Ne6) scaling
with system size [or O(Ne5) in real-time], where N is the
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number of electrons, of both GW and GF2 approaches limits
their applications to relatively small systems or basis set sizes.
Here, we develop a stochastic real-time approach to obtain

neutral excitations within the second-order Born approxima-
tion (GF2), reducing the computational scaling from O(Ne

6) to
O(Ne3). This is achieved using the range-separated (RS)39

stochastic resolution of the identity40 to decouple the 4-index
electron repulsion integrals (ERI) appearing in the Kadanoff−
Baym (KB) equations.25 Furthermore, we adopt the dynamic
mode decomposition (DMD) technique41−44 to solve the
nonlinear KB equations within the adiabatic approximation.
The DMD method is a data-driven model order reduction
procedure used to predict the long-time nonlinear dynamics of
high-dimensional systems and has been used previously with
the time-dependent GW approach.44 We assess the accuracy of
the stochastic, real-time GF2 approach with respect to the
number of stochastic orbitals, the propagation time, and the
system size for hydrogen dimer chains of varying lengths.
The manuscript is organized as follows. In Sections 2 and 3,

we summarize the GF2-BSE method and introduce the
stochastic approaches to its real-time implementation,
respectively. In Section 4, we compare the real-time stochastic
and deterministic algorithms, analyze the statistical error in the
computations, and evaluate the quality of the DMD
extrapolation. Finally, in Section 5, we discuss the significance
and perspectives of this work.

2. TIME-DEPENDENT GF2
In this section, we summarize the time-dependent GF2
approach for computing neutral excitations.6 We begin by
defining the electronic Hamiltonian in second quantization.
Next, we summarize the KB equations for the two-time GF on
the Keldysh contour and introduce the second-order Born
approximation. Finally, we describe the adiabatic limit to the
KB equations. For details on the derivations, we refer the
reader to ref 6.

2.1. Hamiltonian. We consider the electronic Hamiltonian
of a finite system interacting with an explicit electric field. In
second quantization, the Hamiltonian is given by

= + +† † † †H h a a v a a a a t a a1
2

( )
ij

ij i j
ijkl

ijkl i k l j
ij

ij i j
(1)

where i, j, k, and l denote indexes of a general basis, †ai a( )i is
the creation (annihilation) operator for an electron in orbital
χi, and hij and vijkl are the matrix elements of the one-body and
two-body interactions, respectively. The two-body terms are
given by the 4-index ERI

= | =
| |

v ij kl
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d dijkl

i j k l1 1 2 2

1 2
1 2

(2)

where we have assumed that the basis set is real. We use
atomic units throughout the manuscript, where the electron
charge e = 1, the electron mass me = 1, ℏ = 1, the Bohr radius
a0 = 1, and 4πϵ0 = 1.
The last term in eq 1 is a time-dependent perturbation.

Here, to describe neutral excitation, we couple the system to an
external electric field, E(t), within the dipole approximation,
where Δij(t) = E(t)·μij and

= r r r r( ) ( ) dij i j (3)

We choose to explicitly include this term in the Hamiltonian
(rather than introducing a linear-response perturbation in the
initial wave function) because we make no assumption that the
field is weak.

2.2. Kadanoff−Baym Equations. Following ref 6, the
equations of motion for the single-particle lesser GF, G<(t1, t2),
are given by the KB equations

= [ ] +< < <i t t t t t t tG F G I( , ) ( ) ( , ) ( , )t 1 2 1 1 2 1 21 (4)

and

= [ ] +< < <i t t t t t t tG G F I( , ) ( , ) ( ) ( , )t 1 2 1 2 2 1 22 (5)

where t1 and t2 are projections onto the real-time branch, ρ(t)
= −iG<(t, t) is the time-dependent density matrix, and F[ρ(t)]
is the Fock operator, with matrix elements given by

[ ] = + [ ] + [ ] +F t h v t v t t( ) ( ) ( ) ( )ij ij ij
H

ij
x

ij (6)

In the above, the Hartree and exchange potentials are given by
vijH[ρ] = ∑klvijklρkl and vijx[ρ] = ∑klvikjlρkl, respectively.
The last terms in eqs 4 and 5 are the collision integrals, given

by6

=

+

< <

<

t t t t t t t

t t t t t

I G

G

( , ) ( , ) ( , ) d

( , ) ( , ) d

t
R

t
A

1 2
0

1 3 3 1 3

0
1 3 3 1 3

1

2

(7)

and

=

+

< <

<

t t t t t t t

t t t t t

I G

G

( , ) ( , ) ( , ) d

( , ) ( , ) d

t
R

t
A

1 2
0

1 3 3 2 3

0
1 3 3 2 3

1

2

(8)

respectively. In the above equations, Σ is the self-energy
(which encodes all many-body interactions), and the super-
script “R/A” denotes retarded/advanced components. Ex-
pressions for the components of Σ will be provided below.

2.3. Second-Order Born Approximation to the Self-
Energy. We use the second-order Born approximation to
obtain an approximate expression for the self-energies, where
the self-energy is expanded to second-order in the Coulombic
interaction. The resulting retarded component can be written
in terms of the retarded and greater screened Coulombic
integrals (δWR/>)6

=

+

<

>

t t iG t t W t t

iG t t W t t

( , ) ( , ) ( , )

( , ) ( , ),

ij
R

mn
mn imjn

R

mn
R

imjn

1 2 1 2 1 2

1 2 1 2 (9)

where

=

+

<

<

W t t i G t t G t t

G t t G t t v v v

( , ) ( ( , ) ( , )

( , ) ( , )) (2 )

imjn
R

klqp
kl qp

A

kl
R

qp impk jnql jlqn

1 2 1 2 2 1

1 2 2 1

(10)

and

=

×

> > <W t t i G t t G t t v

v v

( , ) ( , ) ( , )

(2 )

imjn
klqp

kl qp impk

jnql jlqn

1 2 1 2 2 1

(11)
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A particular feature of the self-energy in eq 9 is the inclusion of
dynamical exchange, as diagrammatically illustrated in Figure
1.

2.4. Adiabatic Approximation. The equations of motion
eqs 4 and 5 for the GFs together with the expression for the
self-energy (eq 9) form a closed set of equations but depend
on two times, t1 and t2. To further simplify the time evolution
of the GF, we assume that the retarded self-energy responds
instantaneously to the application of external driving forces
(e.g., the adiabatic limit)6

[ + ]t t t t t t( , ) ( )/2 ( ),R
1 2

ad
1 2 1 2 (12)

while the lesser self-energy is assumed to be negligible6

< t t( , ) 01 2 (13)

In the above, [ ]tad is the so-called adiabatic GF2 self-energy.
From here on, we will use the basis of the eigenstates of the
Fock operator F(t) (eq 6) with Δij(t) = 0 as this greatly
simplifies the computation of [ ]tad . On this basis, the matrix
elements of [ ]tad are6

= +t W t W( ) ( )
1
2ij

mn
imjn
R

mn
mn

imjn
R

mn
ad

(14)

where

l
m
ooo
n
ooo=

× }

W
f f

i

v v v

lim
1
2

( ) ( )

(2 )

imjn
R

kq

k q

k q

imqk jnqk jkqn

0

(15)

is the Fourier transform of the screened Coulombic
interaction, f(ε) is the Fermi-Dirac distribution, η is a small
positive regularization parameter, and εk are the quasiparticle
energies obtained using a stochastic GF2 for charge excitations
(see ref 34 for more information on how to calculate the
quasiparticle energies using GF2). Using eqs 12 and 13 for the
self-energy, the time evolution of the GFs given by eqs 4 and 5
can be reduced to a simpler form for the equal time (t1 = t2 ≡
t) GF6

= [ ] [ ]

+ †

i
t

t F t t t F t

t t t t

d
d

( ) ( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ))

ij
k

ik kj ik kj

k
ik
ad

kj ik kj
ad

(16)

where, as before, = <t iG t t( ) ( , )ij ij and the matrix elements

of F(t) and t( )ad
were defined in eqs 6 and 14, respectively.

Excitation energies obtained using eq 16 will be referred to as
TD-GF2 (or TD-G0F2 when the quasiparticle energies are
corrected using a single-shot, non-self-consistent GF234).
In TD-GF2, the computational limiting step is the

calculation of the self-energy at time t, t( )ad
. The formal

computational cost scales as O(Ne5) with system size, limiting
the application of TD-GF2 to small system sizes. To reduce
the number of self-energy evaluations, we adopt the DMD
method to describe the long-time limit of the density matrix,
ρ(t), as described in the next subsection. In addition, we
develop a stochastic approach that reduces the scaling of
computing the self-energy to O(Ne3) on the account of
introducing a controlled statistical error. This is described in
the next section.

2.5. Dynamic Mode Decomposition. The DMD method
allows the extrapolation of the density matrix dynamics to long
times without the need to further solve the equation of motion.
As developed in ref 42 the DMD method is a data-driven
model order reduction procedure used to predict the long-time
nonlinear dynamics of high-dimensional systems. The method
is based on Koopman’s theory45,46 for reduced order modeling.
The general strategy is to find a few (r) modes ij with
associated frequencies to approximate the density matrix
dynamics as

=
=

t e( )ij

r

ij
i t

1 (17)

with coefficients . This model is constructed from the short-
time nonlinear dynamics of the density matrix and can be seen
as a finite-dimensional linear approximation to the dynamics.

3. STOCHASTIC REAL-TIME GF2 APPROACH
In this section, we adopt the stochastic resolution of the
identity39,40 to calculate the adiabatic self-energy appearing in
eq 14 and combine it with the equation of motion for the
density matrix (cf., eq 16).

3.1. Stochastic Vectors and the Resolution of the
Identity. We define a stochastic orbital θ as a vector in the
Hilbert space of the system with random elements ±1. The
average of the outer product of the stochastic vectors

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
= =

µ

µ

µ

I

1 0 0
0 1 0

0 0 1

T
Ns

(18)

represents the identity matrix, referred to as the stochastic
r e s o l u t i o n o f t h e i d e n t i t y . 4 0 H e r e ,

=
T

N N
N T1

1s s

s is an average over the set

{θξ} of uncorrelated stochastic orbitals θξ, with ξ = 1, 2, ..., Ns.
Analogous to the deterministic resolution of the identity

(also known as density fitting), in which 3-index (ij|A) and 2-

Figure 1. Direct and exchange correlations contained in the second-
order Born self-energy, GF2. The ovals represent ERIs, and the arrows
are propagators (GFs). In eq 9, the blue components of the diagrams
(solid lines) are wrapped into the screened Coulombic interaction,
while the red propagator (m → n, dotted arrows) is explicitly kept as
Gmn.
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index VAB = (A|B) ERIs are used to approximate the 4-index
ERI as

| |v ij A V B kl( ) ( )ijkl
AB

N

AB
1

aux

(19)

where A(B) is an auxiliary basis of dimension Naux, the
stochastic resolution of the identity can be used as a resolution
basis to approximate the 4-index ERIs as40

v R R ,ijkl ij kl Ns (20)

where = |R A V( )A
N

B
N

AB B
1/2aux aux . One advantage of

using this approximation is that the indexes ij and kl are
decoupled, allowing to perform tensor contractions and reduce
the computational scaling.40,47

The use of the stochastic resolution of the identity to
approximate the ERIs introduces a controllable statistical error
that can be tuned by changing the number of stochastic
orbitals, with a convergence rate proportional to N1/ s . An
alternative for controlling the error is to use the RS stochastic
resolution of the identity, in which the largest contributions to
the ERIs are treated deterministically, while the remaining
terms are treated stochastically. Specifically, as proposed in ref
39, we first identify large contributions (denoted by the
superscript L) to the 3-index ERIs with respect to a preset
threshold

l
m
ooooo

n
ooooo

| =
| | | | {| | |}

ij A
ij A ij A

N
ij A

( )
( ) if ( ) ( )

0 otherwise,

L j
e

max

(21)

where ε′ is a parameter in the range [0, Ne]. The factor N
guarantees that the total non-vanishing elements in (ij|A)L
scale as Oe2. Then, we define the large K-tensors

[ ] = |K ij A V( )ij
Q L

A

N
L

AQ
1/2

aux

(22)

and keep only their larger elements, according to the second
threshold

l
m
ooo
n
ooo[ ] =

[ ] |[ ] | {|[ ] |}
K

K K Kif

0 otherwise,
ij
Q L ij

Q L
ij
Q L

ij
Q L max

(23)

in which ε is a parameter in the range [0,1]. We then define
large and small (denoted by the superscript S) R-tensors as

= [ ]R Kij
L

Q

N

ij
Q L

Q

aux

(24)

and

=R R Rij
S

ij ij
L

(25)

where Rij is defined as in eq 20. Using these expressions, a RS
4-index ERI can be written as

[ ] [ ] +

+ +

v K K R R

R R R R

pqrs
Q

N

pq
Q L

rs
Q L

pq
L

rs
S

N

pq
S

rs
L

N pq
S

rs
S

N

s

s s

aux

(26)

3.2. Stochastic Self-Energy. To derive a stochastic
expression for the self-energy, we insert eq 20 (or eq 26 for
RS computations) into eqs 14 and 15, to yield

[ ]

×

t
f f

i

R R R R R R t

( )
1
2

( ) ( )

(2 ) ( )

ij
kqmn

k q

k q

im qk jn qk jk qn mn

N

ad

s

(27)

where δρ(t) = ρ(t) − ρ(t0). In the above equation, the “prime”
superscript denotes that a different set of stochastic orbitals is
used to construct the R′-tensors. Next, we rearrange the
equation of motion for the density matrix (cf., eq 16) as

= [ ] + + [ ]

+ [ ] + [ ]

[ ] + + [ ]

+ [ ] + [ ]†

i
t

t F t H v t

v t t t

t F t H v t

v t t

d
d

( ) ( ( ) ( )

( ) ( ) ) ( )

( )( ( ) ( )

( ) ( ) )

ij
k

ik ik ik
H

ik
x

ik kj

k
ik kj kj kj

H

kj
x

kj

0

ad

0

ad
(28)

where ΔHik are matrix elements of ΔH = Σ(t0), the GF2 (or
G0F2) quasiparticle energy correction. Excitation energies
obtained using eq 28 in combination with eq 27 will be
referred to as sTD-GF2 (or sTD-G0F2).

4. RESULTS
To assess the accuracy of the real-time stochastic TD-GF2
formalism, we restrict the applications below to systems
interacting with weak electric fields and compare the stochastic
results to the linear-response GF2-BSE frequency-domain
approach.6 In the weak coupling limit, the absorption spectrum
(photoabsorption cross-section) is computed by taking the
imaginary part of the Fourier transform of the induced time-
dependent dipole, averaged over the three spatial directions

=
te t( )

1
3

d (ind. ( ))
d x y z

i t
d

, , (29)

where the induced dipole is given by

= [ ]t e t tind. ( ) ( ( ) ( ))d

t

ij
ij ij ji

d
0

(30)

with μjid being the matrix elements of the d = x, y, z spatial
components of the dipole operator (eq 3), e−Γt is a damping
function with a Γ decay rate that has been added to perform
the Fourier transform in eq 29, and γ ≪ 1 is a dimensionless
parameter that scales the amplitude of the external electric
field. In the above equations, ρij(t) is computed using TD-GF2
or sTD-GF2 and extrapolated using the DMD method.
Furthermore, a closed expression for σ(ω) in terms of the

DMD modes and coefficients can be obtained by inserting eqs
17 into eq 30 (see Appendix A for details)
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Equation 31 allows us to obtain absorption spectra with

arbitrary high resolution (up to { }2 ) by making Γ → 0,
without the need to extrapolate the dynamics numerically.

4.1. Comparison between Deterministic and Sto-
chastic Dynamics. Figure 2 shows the stochastic (sTD-
G0F2) and deterministic (TD-G0F2) induced dipole dynamics
of a hydrogen dimer chain (H20, containing 10 H2 dimers with
bond length of 0.74 Å and intermolecular distance of 1.26 Å,
aligned along the z-axis). The equations of motion for the
density matrix were propagated using eq 28 with stochastic (eq
27) and deterministic (eq 14) self-energies, respectively. In
both cases, a Gaussian-pulse centered at t0 = 1 fs was used to
represent the electric field, with an amplitude γE0 = 0.02 V/Å

Figure 2. Induced dipole dynamics and DMD extrapolation for H20 hydrogen dimer chain using the STO-3G basis set and 80 stochastic orbitals.
(a) Stochastic and deterministic time evolution of the induced dipole moment. The equation of motion was propagated using eq 28 with stochastic
(eq 27) and deterministic (eq 14) self-energies, respectively. The threshold parameters ε′ = 20 and ε = 1 (fully stochastic limit) were used. The
shaded red region is the standard deviation (SD) of the stochastic approach, computed from six independent runs. (b) Standard error as a function
of time, computed as NSD/ r with Nr = 6 independent runs, for the data shown in panel (a). (c) DMD extrapolation of the stochastic induced
dipole dynamics. The shaded purple region signals the DMD window (6 fs) used for obtaining the DMD reduced model. An exponential damping
function, e t t/(0.1 )max , was added to the dynamics. Inset: zoom on the long-time dynamics.

Figure 3. Absorption spectra for two representative hydrogen dimer chains with varying lengths. (a) Computed from 6 fs real-time stochastic
(sTD-G0F2 with ε′ = 20, ε = 1, and Ns = 80) and deterministic (TD-G0F2) dynamics, and their comparison with the linear-response equivalent in
the frequency domain (G0F2-BSE); the red shaded region signals the standard deviation of the stochastic approach. (b) Computed from stochastic
(ε′ = 20, ε = 1, and Ns = 80) and (c) RS stochastic (ε′ = 0.002, ε = 0.001, and Ns = 30) trajectories with DMD extrapolation (tmax = 300 fs) for
varying DMD window lengths (tDMD) for H20. (d−f) Equivalent to (a−c) for H100. In all cases, the absorption spectra were shifted vertically for
clarity, and STO-3G was used as the basis set.
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and a variance of 0.005 fs; the regularization parameter
appearing in eq 15 η = 0.01, and the inverse temperature is set
to β = 50 in all computations (at this low-temperature limit,
the computed observables coincide with zero-temperature
results). For the stochastic approach, averages were computed
using Ns = 80 stochastic orbitals. In all cases, the minimal basis
set STO-3G was used.
Figure 2a exemplifies how the stochastic approach

reproduces the deterministic dynamics, by comparing the
TD-G0F2 and sTD-G0F2 induced dipole dynamics for the H20
chain. The shaded region in red is the standard deviation (SD)
obtained from six independent runs. The statistical error can
be reduced by increasing the number of stochastic orbitals
(with a convergence rate proportional to N1/ s ) or by
changing the RS parameters ε and ε′, as is further discussed in
Section 4.3 below.
We find that for a fixed number of stochastic orbitals and for

fixed values of ε and ε′, the statistical error increases with the
propagation time, as shown in Figure 2b. This is consistent
with our previous finding for the stochastic TDDFT48 and for
the stochastic BSE approach.49 Since the induced dipole
decays rather rapidly in time, the increase in the statistical error
at long times does not affect the absorption spectrum in any
significant way. Nonetheless, to mitigate the divergence of the
dynamics at long times and favor the numerics of the
subsequent Fourier transform, we have multiplied the induced
dipole in both the stochastic and deterministic dynamics by a
damping function e−Γt (see eq 30), with Γ = 10/tmax, where tmax
corresponds to the total propagation time and plays a similar
role as the regularization parameter, η. As a consequence of
adding such a damping function, the width of the absorption
spectra depends on the total propagation time.
The long-time dynamics of the density matrix and the

resultant time-dependent induced dipole were obtained using
the DMD technique outlined above. Figure 2c shows a
comparison between the extrapolated DMD dynamics and the
dynamics obtained by solving eq 28 for both the deterministic
and stochastic methods. The shaded region (first 6 fs in Figure
2c) indicates the portion of the dynamics that was used to train
the reduced DMD model (defined as DMD window), while
the remaining 34 fs (of which 14 fs are shown in Figure 2c)
corresponds to the extrapolated dynamics. We find that the
DMD technique accurately captures the main dynamical
features, even for the noisy stochastic data. Naturally, the
time scale of the events that can be captured by the reduced
DMD model depends on the DMD window length. Below, we
analyze the accuracy of the DMD approach in reproducing the
absorption spectra.

4.2. Comparison between Deterministic and Sto-
chastic Absorption Spectra. In Figure 3a,d, we compare the
absorption spectra obtained from the stochastic and
deterministic real-time dynamics and the reference determin-
istic frequency-domain linear-response approach (G0F2-BSE
with an added Lorentzian broadening, corresponding to the
Fourier transform of e t t10 / max), for two representative hydro-
gen dimer chains. The absorption spectra obtained from the
three different approaches (vertically shifted for clarity) are
numerically identical, demonstrating that the real-time
implementations are consistent with the frequency domain
reference methods (in the weak coupling-linear-response limit)
and, in particular, that the stochastic approach can reproduce
the benchmark results with only 80 stochastic orbitals.

The frequency resolution of the absorption spectra can be
improved by propagating the density matrix dynamics to
longer times using the DMD technique, or equivalently, by
computing σ(ω) using eq 31 with Γ → 0. Figure 3b,e shows
the corresponding absorption spectra for a 300 fs extrapolated
trajectory (sTD-G0F2 + DMD) considering three different
DMD window lengths (tDMD) and their comparison with
deterministic G0F2-BSE results. Even a short (2 fs) window
length provides a reasonable description of the low-excitation
features (main absorption peak at ∼15 eV), but the quality of
the spectra improves with increasing DMD window lengths,
especially for the higher-excitation peaks. Specifically, for the
sTD-G0F2 + DMD method, we observed that the average
DMD spectral error is proportional to t1/ DMD . Alternatively,
the RS parameters ε′ and ε (see eqs 21 and 23) can be chosen
to be smaller such that a larger portion of the computations are
carried out deterministically to minimize the stochastic noise.
This is performed at the cost of introducing a large prefactor,
but the overall cubic scaling (as shown below) does not
change. Absorption spectra for 300 fs extrapolated trajectories
using RS parameters that minimize the stochastic noise are
shown in Figure 3c,f.

4.3. Error Analysis and Scaling. The variation of the RS
threshold parameters, ε and ε′ (see eqs 21 and 23), allows us
to control the ratio of deterministic to stochastic Coulombic
tensor elements. As ε′ → N or ε → 1, the approach reduces to
the fully stochastic limit. By contrast, when ε′ → 0 or ε → 0,
the approach is fully deterministic. Figure 4a shows the
dependence of the statistical error on ε′ and ε for H20. The
average error was estimated using n = 6 independent stochastic
runs as

=
N n

error
1 1

( ( ) ( ) )
N

i

n

i
2

(32)

where Nω is the number of frequencies used in the range E =
10 − 30 eV. As ε increases, the statistical error increases and
approaches the fully stochastic limit (dotted line in Figure 4a).
For the case with the lowest statistical error in Figure 4a (ε′ =
0.002, ε = 0.001), the amount of ERI elements computed
deterministically corresponds to ≈10% for H20, resulting in an
error reduction of almost 2 orders of magnitude compared to
the fully stochastic limit.
The main advantage of using the stochastic formulation of

GF2 in the real-time domain is the reduction in computational
complexity and scaling. Formally, GF2 in the frequency-
domain scales as O(Ne6) with the system size (Ne) while the
real-time deterministic implementation scales as O(Ne

5). By
contrast, when the stochastic resolution of identity is used in
the time domain, the computational scaling is further reduced
to O(Ne3), as long as the number of stochastic orbitals does not
increase with the system size to achieve a similar statistical
error (which is the case for the systems studied here). The
computational limiting step in the sTD-GF2 method is the
computation of the self-energy (eq 27), with a formal scaling of
O(NsNe3) when appropriate tensor contractions are used.
Figure 4b shows the computational cost associated with the
stochastic and deterministic real-time methods and the
equivalent frequency-domain linear-response implementation
for hydrogen dimer chains with varying lengths. The lowest
scaling corresponds to the stochastic real-time implementation,
sTD-GF2, which exhibits an O(Ne3) behavior, with a large
prefactor. For the current target statistical error (sTD-GF2

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00296
J. Chem. Theory Comput. 2023, 19, 5563−5571

5568

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with ε′ = Ne and ε = 1), the stochastic approach is
computationally more efficient than the deterministic approach
for system sizes that exceed N ≈ 200 basis functions.
Improving the statistical error by changing the RS parameters
(e.g., sTD-GF2 with ε′ = 0.002 and ε = 0.001, as shown in
Figure 4b) results in a large wall to wall time compared to the
pure stochastic limits, but the scaling remains the same.

5. CONCLUSIONS
We presented a stochastic real-time approach to compute
excited state energies in extended systems based on the
adiabatic approximation to the KB equations using the second-
order Born approximation to the self-energy (referred to as
sTD-GF2). We showed that the sTD-GF2 approach
reproduces the benchmark linear-response results from
analogous deterministic methods, namely, TD-GF2 and GF2-
BSE6 but at a much milder computational cost that scales as
O(Ne3) with system size, in contrast to the formal O(Ne5) and
O(Ne6) of TD-GF2 and GF2-BSE, respectively. The reduction
in scaling is achieved by introducing a statistical error that can
be controlled by varying the number of stochastic orbitals or
by tuning the fraction of ERIs that are computed deterministi-
cally using the RS resolution of the identity.
Within the adiabatic approximation, the KB equations can

be reduced to a single-time differential equation, which is
efficiently solved using the DMD method. We assessed the

performance of the DMD method for a chain of hydrogen
dimers of various lengths and found that it is sufficient to train
the systems for times as short as 2 fs (independent of the
system size) to greatly improve the resolution of the
absorption spectra.
The method presented in this work offers the possibility to

study neutral excitations in systems with hundreds to
thousands of electrons at the GF2 closure. This complements
the growing manifold of stochastic methods capable of
elucidating the electronic structure of the ground and excited
states in extended systems with open or closed boundary
conditions, including stochastic versions of GW,50,51 GF2 for
ground state39,47 and one-particle excitations,34 DFT,48,52

second-order Møller−Plesset perturbation theory (MP2),40

and second-order coupled cluster singles and doubles
(CC2).53 Further directions include the development of
stochastic techniques that allow the efficient propagation of
the two-time KB equations (eqs 4 and 5), opening the
possibility to describe strongly driven system beyond the
adiabatic limit.

■ APPENDIX A

DMD Analytic Absorption Spectrum
Using eq 17 to compute ρij(t), the induced dipole moment (eq
30) can be written as

= [

]
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Equation 33 can then be used to compute the absorption cross
section (eq 29) as

l
m
ooo
n
ooo

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ
|
}
ooo
~
ooo

×

×

= =

{ } { }e e t t

e e t

( )
3

d ( )

d

d x y z ij

r

ij ji
d

i t t
ij ji

d

i t t

, , 1

( ) ( )
0

(34)

that can be solved analytically, resulting in eq 31.
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(5) Hernandez, S.; Xia, Y.; Vlcěk, V.; Boutelle, R.; Baer, R.; Rabani,
E.; Neuhauser, D. First-Principles Spectra of Au Nanoparticles: from
Quantum to Classical Absorption. Mol. Phys. 2018, 116, 2506−2511.
(6) Dou, W.; Lee, J.; Zhu, J.; Mejía, L.; Reichman, D. R.; Baer, R.;
Rabani, E. Time-Dependent Second-Order Green’s Function Theory
for Neutral Excitations. J. Chem. Theory Comput. 2022, 18, 5221−
5232. PMID: 36040050
(7) Jasrasaria, D.; Philbin, J. P.; Yan, C.; Weinberg, D.; Alivisatos, A.
P.; Rabani, E. Sub-Bandgap Photoinduced Transient Absorption
Features in CdSe Nanostructures: The Role of Trapped Holes. J. Phys.
Chem. C 2020, 124, 17372−17378.

(8) Del Ben, M.; Yang, C.; Li, Z.; Felipe, H.; Louie, S. G.; Deslippe,
J. Accelerating Large-Scale Excited-State GW Calculations on
Leadership HPC Systems. SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis; IEEE, 2020;
pp 1−11.
(9) Liang, J.; Feng, X.; Hait, D.; Head-Gordon, M. Revisiting the
Performance of Time-Dependent Density Functional Theory for
Electronic Excitations: Assessment of 43 Popular and Recently
Developed Functionals from Rungs One to Four. J. Chem. Theory
Comput. 2022, 18, 3460−3473.
(10) Hait, D.; Head-Gordon, M. Orbital Optimized Density
Functional Theory for Electronic Excited States. J. Phys. Chem. Lett.
2021, 12, 4517−4529.
(11) Higgott, O.; Wang, D.; Brierley, S. Variational Quantum
Computation of Excited States. Quantum 2019, 3, 156.
(12) Faber, C.; Boulanger, P.; Attaccalite, C.; Duchemin, I.; Blase, X.
Excited States Properties of Organic Molecules: From Density
Functional Theory to the GW and Bethe−Salpeter Green’s Function
Formalisms. Philos. Trans. R. Soc., A 2014, 372, 20130271.
(13) Marques, M. A.; Gross, E. K. Time-Dependent Density
Functional Theory. Annu. Rev. Phys. Chem. 2004, 55, 427−455.
(14) Burke, K.; Werschnik, J.; Gross, E. Time-Dependent Density
Functional Theory: Past, Present, and Future. J. Chem. Phys. 2005,
123, 062206.
(15) Casida, M. E.; Huix-Rotllant, M. Progress in Time-Dependent
Density-Functional Theory. Annu. Rev. Phys. Chem. 2012, 63, 287−
323.
(16) Marques, M. A.; Ullrich, C. A.; Nogueira, F.; Rubio, A.; Burke,
K.; Gross, E. K. Time-Dependent Density Functional Theory; Springer
Science & Business Media, 2006; Vol. 706.
(17) McLachlan, A.; Ball, M. Time-Dependent Hartree�Fock
Theory for Molecules. Rev. Mod. Phys. 1964, 36, 844−855.
(18) Jorgensen, P. Molecular and Atomic Applications of Time-
Dependent Hartree-Fock Theory. Annu. Rev. Phys. Chem. 1975, 26,
359−380.
(19) Li, X.; Smith, S. M.; Markevitch, A. N.; Romanov, D. A.; Levis,
R. J.; Schlegel, H. B. A time-Dependent Hartree−Fock Approach for
Studying the Electronic Optical Response of Molecules in Intense
Fields. Phys. Chem. Chem. Phys. 2005, 7, 233−239.
(20) Hirata, S. Higher-Order Equation-of-Motion Coupled-Cluster
Methods. J. Chem. Phys. 2004, 121, 51−59.
(21) Bartlett, R. J. Coupled-Cluster Theory and its Equation-of-
Motion Extensions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2,
126−138.
(22) Krylov, A. I. Equation-of-Motion Coupled-Cluster Methods for
Open-Shell and Electronically Excited Species: The Hitchhiker’s
Guide to Fock Space. Annu. Rev. Phys. Chem. 2008, 59, 433−462.
(23) Stefanucci, G.; Van Leeuwen, R. Nonequilibrium Many-Body
Theory of Quantum Systems: A Modern Introduction; Cambridge
University Press, 2013.
(24) Economou, E. N. Green’s Functions in Quantum Physics;
Springer Science & Business Media, 2006; Vol. 7.
(25) Kadanoff, L. P.; Baym, G. Quantum Statistical Mechanics:
Green’s Function Methods in Equilibrium and Nonequilibrium Problems;
CRC Press, 2018.
(26) Hybertsen, M. S.; Louie, S. G. Electron Correlation in
Semiconductors and Insulators: Band gaps and Quasiparticle
Energies. Phys. Rev. B 1986, 34, 5390−5413.
(27) Aryasetiawan, F.; Gunnarsson, O. The GW Method. Rep. Prog.
Phys. 1998, 61, 237−312.
(28) van Schilfgaarde, M.; Kotani, T.; Faleev, S. Quasiparticle Self-
Consistent GW Theory. Phys. Rev. Lett. 2006, 96, 226402.
(29) Kotani, T.; Van Schilfgaarde, M.; Faleev, S. V. Quasiparticle
Self-Consistent GW Method: A Basis for the Independent-Particle
Approximation. Phys. Rev. B 2007, 76, 165106.
(30) Golze, D.; Dvorak, M.; Rinke, P. The GW Compendium: A
Practical Guide to Theoretical Photoemission Spectroscopy. Front.
Chem. 2019, 7, 377.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00296
J. Chem. Theory Comput. 2023, 19, 5563−5571

5570

https://orcid.org/0000-0001-8432-1925
https://orcid.org/0000-0001-8432-1925
mailto:roi.baer@huji.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chao+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7172-7539
https://orcid.org/0000-0001-7172-7539
mailto:cyang@lbl.gov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eran+Rabani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2031-3525
mailto:eran.rabani@berkeley.edu
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00296?ref=pdf
https://doi.org/10.1039/c2cs35394f
https://doi.org/10.1039/c2cs35394f
https://doi.org/10.1002/cphc.201100200
https://doi.org/10.1002/cphc.201100200
https://doi.org/10.1021/acs.chemrev.8b00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1206
https://doi.org/10.1002/wcms.1206
https://doi.org/10.1002/wcms.1206
https://doi.org/10.1080/00268976.2018.1471235
https://doi.org/10.1080/00268976.2018.1471235
https://doi.org/10.1021/acs.jctc.2c00057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.1c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.1c00744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1098/rsta.2013.0271
https://doi.org/10.1098/rsta.2013.0271
https://doi.org/10.1098/rsta.2013.0271
https://doi.org/10.1146/annurev.physchem.55.091602.094449
https://doi.org/10.1146/annurev.physchem.55.091602.094449
https://doi.org/10.1063/1.1904586
https://doi.org/10.1063/1.1904586
https://doi.org/10.1146/annurev-physchem-032511-143803
https://doi.org/10.1146/annurev-physchem-032511-143803
https://doi.org/10.1103/revmodphys.36.844
https://doi.org/10.1103/revmodphys.36.844
https://doi.org/10.1146/annurev.pc.26.100175.002043
https://doi.org/10.1146/annurev.pc.26.100175.002043
https://doi.org/10.1039/b415849k
https://doi.org/10.1039/b415849k
https://doi.org/10.1039/b415849k
https://doi.org/10.1063/1.1753556
https://doi.org/10.1063/1.1753556
https://doi.org/10.1002/wcms.76
https://doi.org/10.1002/wcms.76
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1103/physrevb.34.5390
https://doi.org/10.1103/physrevb.34.5390
https://doi.org/10.1103/physrevb.34.5390
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1103/physrevlett.96.226402
https://doi.org/10.1103/physrevlett.96.226402
https://doi.org/10.1103/physrevb.76.165106
https://doi.org/10.1103/physrevb.76.165106
https://doi.org/10.1103/physrevb.76.165106
https://doi.org/10.3389/fchem.2019.00377
https://doi.org/10.3389/fchem.2019.00377
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(31) Shishkin, M.; Kresse, G. Self-Consistent GW Calculations for
Semiconductors and Insulators. Phys. Rev. B 2007, 75, 235102.
(32) Phillips, J. J.; Zgid, D. Communication: The Description of
Strong Correlation within Self-Consistent Green’s Function Second-
Order Perturbation Teory. J. Chem. Phys. 2014, 140, 241101.
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