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ABSTRACT: We develop a time-dependent second-order Green’s
function theory (GF2) for calculating neutral excited states in molecules.
The equation of motion for the lesser Green’s function (GF) is derived
within the adiabatic approximation to the Kadanoff−Baym (KB)
equation, using the second-order Born approximation for the self-energy.
In the linear response regime, we recast the time-dependent KB equation
into a Bethe−Salpeter-like equation (GF2-BSE), with a kernel
approximated by the second-order Coulomb self-energy. We then apply
our GF2-BSE to a set of molecules and atoms and find that GF2-BSE is
superior to configuration interaction with singles (CIS) and/or time-
dependent Hartree−Fock (TDHF), particularly for charge-transfer
excitations, and is comparable to CIS with perturbative doubles (CIS(D))
in most cases.

I. INTRODUCTION
Calculating excited states in molecules remains one of the grand
challenges for computational chemistry. Time-dependent
Hartree−Fock (HF)1,2 and time-dependent density functional
theory (DFT)3−10 offer affordable and simplemeans to calculate
excited-state energies, but suffer from accuracy with the
corresponding excitation energies deviating by up to several
electron volts. Other quantum chemistry methods, such as
coupled cluster (CC) with singles and doubles within the
equation-of-motion formalism (EOM-CCSD), are more accu-
rate, but are limited to relatively small system sizes, because of
the steep computational scaling.
An alternative to the above is based on many-body

perturbation theory (MBPT) within Green’s function theory.
In particular, the so-called “GW” approximation and the Bethe−
Salpeter equation (BSE) have been successful in predicting
charge and optical excitation, respectively, particularly for
solids.11−26 However, the application of MBPT is often limited
to simple solids with small unit cells, which has led to many
efforts in recent years aiming to reduce the computational cost of
MBPT-based techniques.27−34

The second-order Green’s function (GF2) approach falls into
this MBPT category. However, it has remained somewhat less
popular than the GW/BSE approaches. Recently, GF2 theory
has experienced a renaissance,35−37 partially due to its simplicity
and the inclusion of dynamical exchange effects. In GF2, the self-
energy is described by the second-order Born approxima-
tion,38,39 resulting in a class of dynamical exchange effects40−42

that appear only at second and higher orders, and thus are often

ignored in GW/BSE. On the other hand, GF2 treats the
polarization term differently than GW/BSE and its accuracy in
describing excited states in molecules is unexplored. The
inclusion of such dynamical exchange terms in GF2 leads to
O(N5) scaling of the computational cost where N is the size of
the system.
To overcome this computational bottleneck of GF2, we have

recently introduced a stochastic approach to GF2 (sGF2), based
on a stochastic resolution of identity used to decouple the four-
index Coulomb integrals.43−45 Unlike the standard resolution of
identity (RI),46−50 the number of stochastic orbitals (playing the
role of the resolution basis) does not increase with the system
size for certain size-intensive ground-state properties,44 as well
as for quasiparticle excitations.45 This allows one to reduce the
computational scaling of sGF2 theory toO(N3) at the expense of
introducing a controlled statistical error in the calculated
observable. Similar stochastic approaches to electronic structure
theory have been developed also for other frameworks, including
GW,29 ,51 DFT,52−55 second-order Moller−Plesset
(MP2),43,56−58 and RPA,59 and, more recently, they have also
been used to improve the performance of auxiliary-field
quantum Monte Carlo.60
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In previous work, we have used the imaginary time and real-
time sGF2 theory to calculate the ground-state and quasi-
particle properties of molecular systems and assessed the
accuracy of the stochastic resolution of identity for GF2.44,45

Furthermore, we have introduced a range-separated stochastic
RI approach, where the long-range Coulomb term was
approximated by the stochastic RI and the short-range Coulomb
term was described by a deterministic RI.61 This hybrid
deterministic-stochastic range-separated RI reduces the stochas-
tic noise while maintaining the O(N3) computational scaling,
which allows us to calculate the quasi-particle spectrum for
systems containing N = 1000 electrons or more.61

In the present work, we extend the GF2 formalism to describe
neutral excitations by considering explicitly the optical field
within a time-dependent nonequilibrium GF2 theory. Unlike
the equilibrium case, nonequilibrium Green’s functions are
dependent on two times and, thus, are more challenging to
compute. Here, to simplify the calculation, we first invoke an
adiabatic approximation to obtain the self-energy. We then
derive within linear response theory a Bethe−Salpeter-like
equation along with the second-order Born approximation to
describe the Bethe−Salpeter kernel. While our long-term goal is
to go beyond the adiabatic approximation and to develop a
stochastic approach to reduce the scaling of the GF2 theory for
excited states toO(N3), here, we focus on assessing the accuracy
of GF2 for neutral excitations and comparing the approach to
other methods, such as second-order approximation to EOM-
CCSD (EOM-CC2) and configuration interaction with singles
and perturbative doubles (CIS(D)). We note, in passing, that
while it is difficult to formulate a stochastic version of EOM-
CCSD with favorable scaling (as compared to the O(N3) of a
stochastic GF2), some of us are formulating a stochastic version
of EOM-CC2,62 which will be comparable to GF2, in terms of
scaling.
We show, at least in some simple but paradigmatic examples,

that the time-dependent GF2 theory provides a more accurate
framework to predict excited states compared to TDHF and
configuration interaction with singles (CIS), and is competitive
with and CIS(D) and EOM-CC2. In particular, for charge
transfer states, CIS fails to predict the correct energy, whereas
sGF2 provides a more reliable estimate of charge transfer
excitations.
The manuscript is organized as follows: In Sections II and III,

we present the formulation of the time-dependent GF2 theory in
both the time and frequency domains. In Section IV, we test the
performance of GF2 theory against other quantum chemistry
methodologies for a representative set of atoms and molecules.
Finally, in Section V, we present conclusions.

II. THEORY
II.A. Notation. We start by defining a general electronic

Hamiltonian in second quantization form. The formulation is
general and applies to any choice of basis set. In this section, we
us the notation i, j, k, l, ... to represent the indices in a general
basis. The Hamiltonian is given by

= + †H H t a a( )
ij

ij i j0
(1)

where †ai a( )i is the creation (annihilation) operator for an
electron in orbital χi(r), H0 is the unperturbed Hamiltonian,
which is defined as

= +† † †H h a a v a a a a1
2ij

ij i j
ijkl

ijkl i k l j0
(2)

hij is the one-bodymatrix element in the basis, and vijkl represents
the two-body, four-index Coulomb integral, given by

= | =
| |

v ij kl
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d dijkl

i j k l1 1 2 2

1 2
1 2

(3)

The last term on the right-hand side of eq 1 represents a time-
dependent perturbation, which is assumed to be one-body,
suitable for describing the linear absorption spectrum, where
Δij(t) is the time-dependent one-body matrix element of the
perturbation. In situations where the chosen basis is not
orthonormal, we also define the overlap S with the overlap
matrix elements of orbital χi(r) and χj(r) as

= | =S i j r r r( ) ( ) ( ) dij i j (4)

II.B. Green’s Function and Kadanoff−Baym Equations.
The traditional approach to describe excited states generated by
the Hamiltonian (eq 1) is based on solving the many-body
eigenvalue problem, H|Ψn⟩ = En|Ψn⟩, where En and |Ψn⟩ are the
nth eigenvalue and eigenstate, respectively. A complete solution
within full configuration-interaction (FCI) is prohibitive for
large system sizes or large atomic basis sets, and thus, most
excited state calculations are based on introducing approx-
imations with reduced computational scaling.
The Green’s function formalism offers a systematic way to

treat the many-body interactions in eq 1 using diagrammatic
expansions. A central quantity in this approach is the single
particle lesser Green’s function defined as

=< †G t t i a t a t( , ) ( ) ( )ij j i1 2 2 1 (5)

(we assume that ℏ = 1).
In the above, we have used the Heisenberg representation for

the time-dependent operator

=† †a t e a( ) ej
i H t t

j
i H t t( ) d ( ) dt t

0 0 (6)

where is the time-ordering operator and the expectation value
is calculated within the Grand Canonical ensemble: ⟨···⟩ =

[ ··· ]Z Tr ( )e H N1 ( )0 . Here, Z = [ ]Tr e H N( )0 is the Grand
Canonical partition function, β the inverse temperature, μ the
chemical potential, and N the number operator = †N a a( )i i i .
The equations of motion for the lesser Green’s function follow

the Kadanoff−Baym equations:38

= [ ] +< < <iS G t t F t G t t I t t( , ) ( ) ( , ) ( , )t 1 2 1 1 2 1 21 (7)

and

= [ ] *< < <i G t t S G t t F t I t t( , ) ( , ) ( ) ( , )t 1 2 1 2 2 2 12 (8)

where ρ(t) = −iG<(t, t) is the density matrix, and F[ρ] is the
Fock operator with matrix elements

[ ] = + [ ] + [ ] +F h v v t( )ij ij ij
H

ij
x

ij (9)

In the above, [ ] =v vij
H

kl ijkl kl is the matrix element of the
Hartree potential and =v vij

x
kl ikjl kl is the matrix element of

the exchange interaction. Finally, the scattering integral, I<(t1,
t2), appearing in eqs 7 and 8 is given by
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= +< <

<

I t t t t G t t t

t t G t t t

( , ) ( , ) ( , ) d

( , ) ( , ) d

t
R

t
A

1 2
0

1 3 3 2 3

0
1 3 3 2 3

1

2

(10)

In the above equation, = †G t t i t t a t a t( , ) ( ) ( ) ( )A
j i1 2 2 1 2 1

is the advanced Green’s function and θ(t) is the Heaviside step-
function. The exact form of the retarded (ΣR(t1, t2)) and lesser
(Σ<(t1, t2)) self-energies is difficult to obtain apart from the case
of simple model systems and, thus, most GF calculations are
based on approximating the self-energies using different
closures.

II.C. Second-Order Born Approximation to the Self-
Energy (GF2 Theory). In this work, we resort to the second-
order Born approximation to compute the self-energies (i.e.,
GF2 theory) and, as will become clear below, we describe only
the retarded self-energy appearing above (Langreth rules have
been used38)

=

+

<

>

t t iG t t W t t

iG t t W t t

( , ) ( , ) ( , )

( , ) ( , )

ij
R

mn
mn imjn

R

mn
R

imjn

1 2 1 2 1 2

1 2 1 2 (11)

where the retarded and greater screened Coulomb integrals are
given by

=

+

<

<

W t t i G t t G t t

G t t G t t v v v

( , ) ( ( , ) ( , )

( , ) ( , )) (2 )

imjn
R

klqp
kl qp

A

kl
R

qp impk jnql jlqn

1 2 1 2 2 1

1 2 2 1

(12)

=> > <W t t i G t t G t t v v v( , ) ( , ) ( , ) (2 )imjn
klqp

kl qp impk jnql jlqn1 2 1 2 2 1

(13)

and, as before, G t t( , )ij
R A,

1 2 and < >G t t( , )ij
,

1 2 are the retarded/
advanced and the lesser/greater Green’s function, respectively.

II.D. The Adiabatic Approximation. Before we proceed,
we would like to point out to another challenge associated with
the need to propagate the GF and to evaluate the self-energies
along two times. In the following subsection, we will invoke the
adiabatic approximation similarly to the approach taken for
GW/BSE.63 This allows us to reduce the complexity associated
with describing two-time self-energies. The idea behind the
adiabatic approximation is that the system responds instanta-
neously to the external driving force such that the integral in eq
10 becomes local in time.
It is convenient to define the central time t and the time

difference τ:

= +
t

t t( )
2

1 2
(14)

= t t1 2 (15)

and express the self-energies appearing in the scattering integral
(cf., eq 10) by63

t t t( , ) ( ) ( )R
1 2

ad
(16)

< t t( , ) 01 2 (17)

In the above equation, t( )ad is defined as

=t t t t( ) ( , )e d ( , )R i Rad
1 2 (18)

The adiabatic approximation is consistent with taking the ω
→ 0 limit assuming that the plasma energy (the main source of
screening) is much higher than the neutral excitation energy
differences.64 Note that, in the above equation, t( )ad is given in
terms of a Fourier transform of the time difference variable, τ
denoted by a “tilde” · · ·( ).
Using the adiabatic approximation for the self-energy, the

equation of motion for the equal time Green’s function, −iG<(t1
= t, t2 = t) = ρ(t), can be simplified as

= [ ] + [ ] + †i t S F t t t t F t t S( ) ( ( ) ( )) ( ) ( )( ( ) ( ))t
1 ad ad 1

(19)

where ρ(t) is the density matrix and t( )ad is defined in eq 18. In
principle, the solution of the above equation requires a
knowledge of the retarded and lesser Green’s functions as well
as the screened Coulomb kernel to obtain t( )ad from eq 18.
While this seems challenging, the adiabatic limit offers a
significant simplification within the weak perturbation limit, as
described in the following section.

III. THE WEAK DRIVING LIMIT
In the limit of weak external perturbation, namely, when
Δij(t) → 0, we can further simplify the description of the self-
energy and recast the time-dependent equation ofmotion for the
density matrix into a Casida-like form. In this section, we first
provide a working expression to obtain the t( )ad without
solving the Kadanoff−Baym equations for the retarded and
lesser Green’s functions, and then derive a Casida-like equation
to describe the neutral (excitonic) spectrum within the GF2
closure.

III.A. Self-Energy. So far, the formalism described above
makes no assumption about the basis set used. However, using
the eigenvalues of eq 9 with Δij(t) = 0 leads to a significant
simplification. Thus, we now describe the calculation of Σad(t)
using the eigenstates (ψi) and the eigenvalues (εi) of the Fock
matrix. To obtain an expression for Σad(t), we treat the two
terms appearing on the right-hand side of eq 11 separately, and
refer to the corresponding self-energies with superscripts “ad1”
and “ad2”. For t( )ij

ad1 , we further use an approximation63,64 for
t h e l e s s e r G r e e n ’ s f u n c t i o n g i v e n b y

= =< <G t i G t( , ) 2 ( ) ( , 0)ij i ij . This leads to the

following expression for t( )ij
ad1 (see Appendix A for more

details)

=

=

<t i W G t

W t

( ) ( ) ( , 0)

( ) ( )

ij
mn

imjn
R

m mn

kl
imjn
R

m mn

ad1

(20)

where, as before, ρkl(t) is the kl matrix element of the density
matrix. Following similar steps for t( )ij

ad2 we obtain (see
Appendix A for more details)

t W( )
1
2

(0)ij
mn

imjn
R

mn
ad2

(21)
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Note that t( )ij
ad2 is time-independent. Using the zeroth order

approximation to the Green’s functions appearing in eq 12, we
find that

=

+
+ +

×

=

W f
i

i
f

v v v

f f

i
v v v

( ) ( )
1

1
( )

(2 )

( ) ( )
(2 )

imjn
R

klpq
l

l q

p l
p

kl pq impk jnql jlqn

kq

k q

k q
imqk jnqk jkqn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

(22)

In the above equation, η is a small positive regularization
parameter, and f(εn) is the Fermi−Dirac distribution.

III.B. Linear Response Theory: GF2-BSE. For reasons that
will become clear below, we denote the initial density matrix ρ(t
= 0) ≡ ρ0 and the initial self-energy as Σad(0) ≡ ΔH.
Furthermore, we reorganize eq 19 into a more suitable form
for introducing the Bethe−Salpeter equation:

= [ ] + + [ ] [ ] + [ ] [ ]

[ ] + + [ ] [ ] + [ ] [ ]

+ = =† †

i S F H v v v v

F H v v v v S

S t t t t S

( )

( )

( ( ) ( 0)) ( ( ) ( 0))

t
H H x x

H H x x

1
0 0 0

0 0 0
1

1 ad ad ad ad 1

(23)

In the applications reported below, we obtain the
quasiparticle-like correction term (ΔH) from a stochastic GF2
calculation45 and the adiabatic self-energy (Σad(t)) using the
second-order Born approximation. The above equation can be
used to describe both weak and strong driving forces, Δ(t) but
can be further simplified into a Casida-like form within linear
response theory (assuming weak driving forces).
Following the general guidelines used in time dependent DFT

or TDHF,4,10,63 the time-dependent GF2 can be recast into a
symplectic eigenvalue problem (assuming zero temperature and
spin-restricted orbitals)

=A B
B A

X
Y

X
Y

i
k
jjj y

{
zzzi

k
jjj y

{
zzz i

k
jjj y

{
zzz

(24)

where A and B are matrices of sizeNoccNvirt × NoccNvirt andNocc/
Nvirt is the number of occupied/virtual molecular orbitals. These
matrices can be expressed in terms of the exchangeKX and direct
KDA correlations

= +
=

A D K K

B K K

2

2

X

X

DA

DB (25)

The matrix elements of D, KX, and KDA are given by

=

=
* *

| |

= +

= +

D

K

K W v

K W v

r r
r r r r

r r

( )

d d
( ( )) ( )( ( )) ( )

ia jb a i ab ij

ia jb
X i a j b

ia jb abij
R

abij

ia jb ibaj
R

ibaj

,

, 1 2
1 1 2 2

1 2

,
DA

,
DB

(26)

Here, i, j represents occupied orbitals and a, b are unoccupied
orbitals. ωa,i is the GF2-corrected quasiparticle energy in the
molecular basis obtained by solving for45

= + | |( )n n n
R

n n (27)

whereΣR(ωn) is the self-energy obtained from a single-timeGF2
calculation.45 eqs 24−26 are the main result of this subsection
and are referred to as “GF2-BSE”.

III.C. Computational Scaling and Outline of the
Approach. The overall computational scaling of solving eq
23 for ρ(t) is determined by the computational scaling of the
self-energy, which is the most expansive part of the calculation.
Formally, the scaling of the self-energy is O(N5), where N is the
size of the basis. In linear response, the computational scaling for
the GF2-BSE is O(nrootN5) with nroot being the number of roots,
a common increase in scaling going from the time domain to the
frequency domain.4,63 A significant reduction in the overall
scaling to cubic (O(nrootN3)) can be achieved using a stochastic
resolution of identity,43,44 applied to the time-domain

Table 1. Difference of the Lowest Singlets (in eV) for CIS, TDHF, CIS(D), EOM-CC2, GW-BSE, G0F2-BSE, and EOM-CCSD
against EOM-CC(2,3)

atom state
ΔCIS
(eV)

ΔTDHF
(eV)

ΔCIS(D)
(eV)

ΔEOM-CC2
(eV)

ΔEOM-CCSD
(eV)

ΔG0W0-BSE
(eV)

ΔG0F2-BSE
(eV)

EOM-CC(2,3)
(eV)

He Ag −0.72 −1.09 −0.11 −0.11 0.00 0.30 −0.05 52.66
B2u −0.82 −0.98 −0.15 −0.15 0.00 0.27 −0.67 78.20
B3u −0.82 −0.98 −0.15 −0.15 0.00 0.27 −0.67 78.20
B1u −0.82 −0.98 −0.15 −0.15 0.00 0.27 −0.67 78.20

error 0.79 1.01 0.14 0.14 0.00 0.28 0.51 0

Be B2u −0.33 −0.63 −0.18 −0.19 0.00 −0.17 −0.17 5.63
B3u −0.33 −0.63 −0.18 −0.19 0.00 −0.17 −0.17 5.63
B1u −0.33 −0.63 −0.18 −0.19 0.00 −0.17 −0.17 5.63

error 0.33 0.63 0.18 0.19 0.00 0.17 0.17 0

Ne 1B1g −1.01 −1.15 0.17 0.21 0.04 −0.07 0.82 50.02
1B2g −1.01 −1.15 0.17 0.21 0.04 −0.07 0.82 50.02
1B3g −1.01 −1.15 0.17 0.21 0.04 −0.07 0.82 50.02
1Ag −1.05 −1.12 0.18 0.21 0.04 0.01 0.73 50.52
2Ag −1.05 −1.12 0.18 0.21 0.04 0.01 0.73 50.52

error 1.03 1.14 0.18 0.21 0.04 0.04 0.79 0
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formulation, which will be the subject of future study. Here, we
focus on assessing the accuracy of the GF2-BSE approach to
describe neutral excisions. Before doing so, we outline the main
steps for such calculation:
(1) Perform a Hartree−Fock calculation and generate the

Fock matrix (eq 9).
(2) Use the single-time GF2 approach45 to calculate the self-

energy appearing in eq 27 and obtain the GF2 correction
to the quasi-particle energies, ωn.

(3) Calculate =W ( 0)im jn
R

, using eq 22. For the applica-
tions reported below, we used a damping parameter (η =
0.01 au), which is sufficiently small to converge the
results.

(4) Calculate the matrix elements of eq 24, and solve for the
eigenvalues and eigenstates.

Solving for ωn is done self-consistently both for solving eq 27
and also for obtaining ( )R . A simplification that often is useful
within the framework of GW/BSE is to use a single-shot

calculation, which amounts to replacing ( )R with the zeroth
order approximation.64 However, this may result in multiple
solutions for ωn and, in such cases, we restrict the solution to the
fully self-consistent treatment.45 We denote the former
approach as G0F2-BSE and the latter as GF2-BSE.

IV. APPLICATIONS TO ATOMS AND MOLECULES
In this section, we compare results obtained using the GF2-BSE
approach for the low-lying excited states for a set of atoms and
molecules, and compare GF2-BSE results to results obtained
using CIS, TDHF, CIS(D), GW-BSE, EOM-CCSD, EOM-
CC2, and EOM-CC(2,3) methods. The latter (EOM-CC(2,3))
is the most accurate among the methods compared here, and is
used as our references. We use the cc-pVDZ basis set for most
cases discussed below, unless otherwise noted.
In Table 1, we list several lowest singlet excited-state energy

differences (compared to the corresponding EOM-CC(2,3)
singlet energies) for several closed-shell atoms. The bottom row

Table 2. Difference of the Several Lowest Vertical Excitation Energies for H2 Using CIS, TDHF, CIS(D), EOM-CC2, GW-BSE,
G0F2-BSE, EOM-CCSD against EOM-CC(2,3) Approach

H2 state
ΔCIS
(eV)

ΔTDHF
(eV)

ΔCIS(D)
(eV)

ΔEOM-CC2
(eV)

ΔG0W0-BSE
(eV)

ΔG0F2-BSE
(eV)

EOM-CCSD
(eV)

EOM-CC(2,3)
(eV)

1B1u 0.15 −0.01 0.11 0.10 0.22 −0.14 0.00 13.91
1Ag 0.06 −0.08 0.18 0.16 0.55 −0.22 0.00 21.40
2B1u 1.29 1.04 0.94 0.97 1.10 0.89 0.00 30.98
1B2u −0.27 −0.41 0.03 0.03 0.38 −0.65 0.00 40.57
1B3u −0.27 −0.41 0.03 0.03 0.38 −0.65 0.00 40.57

error 0.41 0.39 0.26 0.26 0.53 0.51 0.00 0

Table 3. Difference of the Lowest Singlet Energy () from CIS, TDHF, CIS(D), EOM-CC2, GF2-BSE, EOM-CCSD against EOM-
CC(2,3) for a List of Moleculesa

state
ΔCIS
(eV)

ΔTDHF
(eV)

ΔCIS(D)
(eV)

ΔEOM-CC2
(eV)

ΔEOM-CCSD
(eV)

ΔG0W0-BSE
(eV) ΔGF2-BSE (eV)

EOM-CC(2,3)
(eV)

LiH 1A1 0.58 0.54 0.25 0.26 0.00 0.24 0.04 ± 0.11 3.47
1B1 0.60 0.58 0.26 0.26 0.00 0.32 0.09 ± 0.12 4.49
1B2 0.60 0.58 0.26 0.26 0.00 0.32 0.12 ± 0.12 4.49
2A1 0.45 0.39 0.26 0.26 0.00 0.31 0.15 ± 0.11 6.49
2B1 0.49 0.48 0.25 0.25 0.00 0.13 −0.15 ± 0.12 7.37
2B2 0.49 0.48 0.25 0.25 0.00 0.13 −0.12 ± 0.13 7.37

error 0.54 0.51 0.25 0.26 0.00 0.24 0.11 ± 0.12 0

LiF 1B1 1.79 1.78 −1.46 −0.97 −0.05 −0.23 −0.42 ± 0.50 6.09
(−0.02) (−0.01) (−0.52) (4.72) (0.07) (0.11 ± 0.01)

1B2 1.79 1.78 −1.46 −0.97 −0.05 −0.23 −0.29 ± 0.50 6.09
1A1 2.03 2.02 −1.64 −1.13 −0.03 −0.15 −0.60 ± 0.55 6.47
1A2 1.50 1.46 −1.13 −0.84 −0.06 −0.22 −0.13 ± 0.48 7.79
2A1 1.52 1.50 −1.20 −0.84 −0.06 −0.21 −0.06 ± 0.47 7.79
2A2 1.48 1.45 −1.25 −0.84 −0.07 −0.25 −0.04 ± 0.46 7.83

error 1.68 1.67 1.36 0.93 0.05 0.22 0.26 ± 0.50 0

H2O 1B2 0.95 0.90 −0.18 −0.16 −0.08 0.21 −0.27 ± 0.35 8.27
(1.07) (1.13) (−0.78) (8.17) (0.22) (−0.35 ± 0.03)

1A2 0.70 0.63 −0.11 −0.14 −0.06 0.23 −0.02 ± 0.38 10.30
1A1 0.94 0.88 −0.17 −0.15 −0.06 0.22 −0.28 ± 0.42 10.89
1B1 0.66 0.56 −0.10 −0.12 −0.05 0.21 −0.12 ± 0.40 12.97
2B1 0.19 0.14 −0.06 −0.04 −0.01 0.11 −0.60 ± 0.54 14.89
2A1 0.43 0.21 −0.09 −0.08 0.01 0.12 −0.54 ± 0.56 17.95

error 0.64 0.55 0.12 0.11 0.05 0.18 0.30 ± 0.44 0
aNumbers in parentheses indicate the binding energy for EOM-CCSD and errors in the binding energy, with respect to that of EOM-CCSD for
other methods.
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indicates the averaged absolute error. We find that the smallest
deviations are observed for the CIS(D) approach, with an overall
average error of ∼0.15 eV. The EOM-CC2 results are very
similar to CIS(D) results, which is not too surprising given that
both methods include electron correlation only up to second
order. CIS and TDHF underestimate the excitation energies by

an average of nearly 1 eV, while the G0F2-BSE approach
outperforms CIS and TDHF with an average error of 0.5 eV;
however, G0F2-BSE performs much better for the lowest singlet
excitation. The G0F2-BSE underestimates the excitation
energies in some cases, and in others, it overestimates them.
The overall better performance of G0F2-BSE, with respect to

Table 4. Difference of the Lowest Singlet Energy (in eV) from CIS, TDHF, CIS(D), EOM-CC2, and GF2-BSE against EOM-
CCSD for the Listed Moleculesa

state ΔCIS (eV) ΔTDHF (eV) ΔCIS(D) (eV) ΔEOM-CC2 (eV) ΔG0W0-BSE (eV) ΔGF2-BSE (eV) EOM-CCSD (eV)

NH3 A′ 0.90 0.86 0.02 0.01 0.31 0.65 ± 0.49 7.59
(0.87) (0.91) (−0.66) (0.23) (−0.27 ± 0.01) (7.13)

A′′ 0.58 0.51 0.04 0.00 0.31 0.82 ± 0.50 9.85
A′ 0.58 0.51 0.04 0.00 0.31 0.94 ± 0.48 9.85
A′′ 0.34 0.31 0.04 0.02 0.21 0.36 ± 0.36 13.38
A′ 0.34 0.31 0.04 0.02 0.21 0.50 ± 0.35 13.38
A′′ 0.40 0.35 0.06 0.05 0.26 0.57 ± 0.35 15.55
A′′ 0.34 0.30 0.01 0.03 0.24 0.58 ± 0.35 15.71
A′ 0.34 0.30 0.01 0.03 0.24 0.65 ± 0.35 15.71

error 0.48 0.43 0.03 0.02 0.26 0.63 ± 0.40 0

HCN A2 −1.49 −1.99 0.13 0.15 −0.43 −0.02 ± 0.35 8.81
(1.83) (2.33) (−0.54) (0.36) (−0.74 ± 0.29) (9.18)

A2 −1.41 −1.65 0.20 0.22 −0.30 0.04 ± 0.38 9.21
A1 −1.41 −1.65 0.20 0.22 −0.30 0.16 ± 0.42 9.21
B2 0.71 0.50 0.21 0.11 0.39 −0.15 ± 0.40 9.70
B1 0.71 0.50 0.21 0.11 0.39 0.05 ± 0.54 9.70
B1 0.37 0.33 0.10 0.12 0.08 −1.30 ± 0.56 11.29
B2 0.37 0.33 0.10 0.12 0.08 −0.82 ± 0.46 11.29
A1 2.20 1.27 0.67 −0.74 0.56 −1.17 ± 0.45 11.76

error 1.08 1.03 0.23 0.22 0.31 0.46 ± 0.45 0
aNumbers in parentheses indicate the binding energy for EOM-CCSD and errors in the binding energy, with respect to that of EOM-CCSD for
other methods.

Table 5. Difference of the Lowest Singlet Energy (in eV) from CIS, TDHF, CIS(D), EOM-CC2, and GF2-BSE against EOM-
CCSD for the Listed Moleculesa

state ΔCIS (eV) ΔTDHF (eV) ΔCIS(D) (eV) ΔEOM-CC2 (eV) ΔG0W0-BSE (eV) ΔGF2-BSE (eV) EOM-CCSD (eV)

N2 1B3g 0.40 (fourth) 0.15 (fourth) 0.25 0.05 0.36 (second) −0.13 ± 0.58 9.62
(2.10) (2.35) (−0.85) (0.25) (−0.37 ± 0.34) (9.70)

1B2g 0.40 (fourth) 0.15 (fourth) 0.25 0.05 0.36 (second) 0 ± 0.62 9.62
1Au −1.83 (first) −2.40 (first) 0.20 0.21 −0.57 (first) 0.17 ± 0.66 10.40
1B1u −1.68 (second) −1.96 (second) 0.32 0.34 −0.35 0.29 ± 0.66 10.83
2Au −1.68 (second) −1.96 (second) 0.32 0.34 −0.35 0.32 ± 0.66 10.83
1B2u 2.12 1.79 0.59 0.53 1.06 −0.3 ± 0.55 13.97
1B3u 2.12 1.79 0.59 0.53 1.06 −0.18 ± 0.59 13.97
2B1u 0.18 −1.46 0.08 −0.07 −1.19 −0.75 ± 0.74 17.00

error 1.30 1.46 0.33 0.27 0.66 0.27 ± 0.63 0

CO 1B1 −0.05 (second) −0.40 (second) 0.12 (second) 0.09 0.08 (fourth) −1.32 ± 0.66 7.41
(1.69) (2.04) (−0.63) (0.90) (−0.28 ± 0.15) (8.78)

1B2 −0.05 (second) −0.40 (second) 0.12 (second) 0.09 0.08 (fourth) −1.13 ± 0.72 7.41
1A2 −0.53 (first) −1.06 (first) 0.01 (first) 0.53 −0.53 (second) −0.38 ± 0.89 7.48
1A1 −0.19 −0.46 0.16 0.75 −0.87 (third) −0.05 ± 0.93 7.60
2A2 −0.19 −0.46 0.16 0.75 −1.36 (first) −0.01 ± 0.93 7.60
2A1 0.96 −0.03 −1.00 −0.56 −0.08 −0.81 ± 0.99 11.86
2B2 1.96 1.67 0.52 0.52 0.26 −0.73 ± 0.75 12.59
2B1 1.96 1.67 0.52 0.52 0.26 −0.55 ± 0.77 12.59

error 0.73 0.77 0.33 0.48 0.44 0.62 ± 0.83 0
aNumbers in parentheses indicate the binding energy for EOM-CCSD and errors in the binding energy with respect to that of EOM-CCSD for
other methods. 1st, 2nd, etc. are used to indicate the changes of the ordering of state as compared to the EOM-CCSD ordering (see main text for
more details).
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CIS/TDHF results from two main attributes: (a) the inclusion
of screening effects in the G0F2-BSE kernel (missing from both
CIS and TDHF), which reduces the coupling between electrons
and holes and (b) the correction of the quasi-particle energies,
ωn, that are assumed to equal the HF orbital energies in CIS/
TDHF and thus overestimate the fundamental band gap
(HOMO−LUMO gap). The error cancellation between the
larger HF fundamental gap and the stronger Coulomb
interactions give rise to an overall reasonable excitation energies
using CIS and TDHF.
In Table 2, we list the lowest singlet excited-state energy

differences (compared to the EOM-CC(2,3)) for the vertical
excitation of H2 molecule within the cc-pVDZ basis. Since there
are only two electrons involved, the EOM-CCSD provides an
exact solution for the basis set used. We excluded excited states
with double excitation character since these states are not well-
described by several methods, including CIS, TDHF, and the
adiabatic approximation to GF2. We find that all methods
provide similar accuracy of the excited states, compared to the
EOM-CCSD across all excitation energies.
In Table 3, we list the vertical excitation energies for three

different molecules obtained using the aforementioned
methods. To reduce the scaling and the computational effort,
we use the stochastic GF2 methods45 to calculate the self-

energies appearing in eq 27, as well as to obtain the GF2
correction (ΔH) to the quasi-particle energies, ωn. Thus, the
vertical excitation energies obtained from the GF2-BSE method
have an error bar resulting for the use of a stochastic approach.
We have used 2000 stochastic orbitals to obtain the full self-
consistent self-energy. The stochastic errors from GF2-BSE are
estimated using 10 independent runs. Note that here we have
only used the stochastic formulation of Matsubara and mixed
time GF2 to obtain the self-energy and hence quasi-particle
energies. A full stochastic implementation of the GF2-BSE
theory will be presented and tested in future work.
We first examine the vertical excitations LiH, LiF, and H2O, as

shown in Table 3.We find that for the entire range of excitations,
the GF2-BSE approach outperforms CIS and TDHF, with an
overall error that is smaller by a factor of 3, compared to the
other twomethods. Comparing the results obtained by the GF2-
BSE with the CIS(D) and EOM-CC2, we find that, for the lower
excitation energies, the two GF-based approach provide similar
accuracies, while the CIS(D) and EOM-CC2 provide a better
description of higher vertical excitations. For LiF, we find that
CIS(D) and EOM-CC2 are rather poor, compared to the GF2-
BSE (showing similar results to G0W0-BSE). LiF excited states
have significant charge transfer character, which requires orbital

Table 6. Difference of the Lowest Singlet Energy from CIS, TDHF, CIS(D), EOM-CC2, and GF2-BSE against EOM-CCSD for
the Listed Moleculesa

state ΔCIS (eV) ΔTDHF (eV) ΔCIS(D) (eV) ΔEOM-CC2 (eV) ΔG0W0-BSE (eV) ΔGF2-BSE (eV) EOM-CCSD (eV)

CH4 1A′ 0.44 0.41 0.12 0.08 0.28 0.08 ± 0.47 12.31
(0.80) (0.82) (−0.46) (0.16) (−0.22 ± 0.02) (6.50)

1A′′ 0.44 0.41 0.12 0.08 0.28 0.20 ± 0.48 12.31
2A′ 0.44 0.41 0.12 0.08 0.28 0.33 ± 0.47 12.31
2A′′ 0.53 0.51 0.15 0.14 0.37 0.33 ± 0.47 14.03
3A′ 0.53 0.51 0.15 0.14 0.37 0.37 ± 0.48 14.03
3A′′ 0.53 0.51 0.15 0.14 0.37 0.46 ± 0.48 14.03
4A′ 0.52 0.50 0.12 0.11 0.32 0.25 ± 0.48 14.32
4A′′ 0.52 0.50 0.12 0.11 0.32 0.35 ± 0.48 14.32

error 0.50 0.47 0.13 0.11 0.32 0.30 ± 0.48 0

C2H6 1Ag 0.58 0.56 0.07 0.00 0.35 −0.38 ± 0.26 10.88
(0.86) (0.87) (−0.43) (0.19) (−0.11 ± 0.26) (5.95)

1Bg 0.58 0.56 0.07 0.00 0.35 −0.20 ± 0.27 10.88
2Ag 0.91 0.86 −0.02 −0.02 0.34 −0.10 ± 0.38 11.57
1Bu 0.45 0.41 0.10 0.02 0.34 −0.29 ± 0.23 12.34
1Au 0.45 0.41 0.10 0.02 0.34 −0.10 ± 0.24 12.34
2Au 0.73 0.71 0.10 0.07 0.42 −0.14 ± 0.26 12.70
2Bu 0.73 0.70 0.05 0.03 0.36 −0.23 ± 0.24 12.89
3Au 0.73 0.70 0.05 0.03 0.36 −0.13 ± 0.24 12.89

error 0.65 0.62 0.07 0.03 0.36 0.20 ± 0.27 0

C3H8 1A′ 0.68 0.66 0.05 −0.03 0.40 −0.48 ± 0.43 10.48
1A′′ 0.92 (third) 0.89 (third) 0.02 −0.08 0.39 −0.48 ± 0.47 10.71
2A′ 0.83 (second) 0.80 (second) 0.03 −0.06 0.39 −0.23 ± 0.52 10.79
2A′′ 0.52 0.50 0.09 0.01 0.34 −0.41 ± 0.52 11.61
3A′′ 0.64 0.62 0.00 −0.02 0.35 −0.36 ± 0.45 11.86
4A′′ 0.87 (eighth) 0.85 (eighth) 0.00 −0.05 (seventh) 0.45 (eighth) −0.39 ± 0.45 12.04
3A′ 0.81 0.78 0.03 −0.07 (sixth) 0.39 (sixth) −0.29 ± 0.42 12.05
4A′ 0.62 (sixth) 0.57 (sixth) 0.09 −0.02 0.38 (seventh) −0.25 ± 0.40 12.09

error 0.74 0.71 0.04 0.04 0.39 0.34 ± 0.46 0
aNumbers in parentheses indicate the binding energy for EOM-CCSD and errors in the binding energy with respect to that of EOM-CCSD for
other methods. 1st, 2nd, etc. are used to indicate the changes of the ordering of state as compared to the EOM-CCSD ordering (see main text for
more details).
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relaxation, which is captured to a great degree by the GF2 (and
also GW) closures.
To further understand the error, we compare the binding

energies calculated for the lowest excitation (shown in
parentheses for each method). The binding energy is defined
as the difference between quasiparticle gap and the lowest
optical energy gap. Here, we use EOM-CCSD as our reference.
We list absolute binding energy from EOM-CCSD, the error of
the other method against EOM-CCSD. We find that GW-BSE
and GF2-BSE agree well with the EOM-CCSD approach, while
CIS/TDHF deviate significantly (except for LiF). While the
overall comparison of all methods with EOM-CCSD for LiF
yields rather poor results, the GF2-BSE approach seems to be
systematically more accurate than CIS, TDHF, EOM-CC2, and
CIS(D) for all excitations energies. The source of deviation from
the EOM-CCSD approach for all methods can be traced to
errors in estimating the fundamental gaps (all binding energies
are very similar), where the GF2 approach provides a more
accurate description leading to better agreement for the
excitations energies. Note also that LiF has significant charge
transfer character. In CIS/TDHF or CIS(D) method, orbital
relaxations are not included, whereas in the case of GW-BSE or
GF2-BSE, the orbital relaxation is incorporated in quasi-partial
energy correction. We expect that GW-BSE or GF2-BSE works
better for charge-transfer states. This will be further tested in
future studies.

In Tables 4 and 5, we compare the GF2-BSE excited states for
several additional systems. Since EOM-CCSD predicts very
similar results as compared to EOM-CC(2,3), we now use
EOM-CCSD as our reference. For these systems, the perform-
ance of TDHF/CIS is rather poor. Note that the ordering of the
low lying excitation energies from different methods can be
different. For instance, the 1B3g state of N2 molecule is the first
excited state in EOM-CCSD, which is the fourth excited state in
CIS method. We label the ordering in energy for the methods
when the ordering is different from EOM-CCSD ordering. We
note in passing that for the GF2 calculations, we do not use
symmetry to order the states but instead, average the results over
10 independent runs. Each stochastic runmay results in different
ordering of the states and the results presented in this work
simply average over these fluctuations. Thus, the symmetry of
the states within sGF2 is difficult to determine and perhaps
required better statistical averaging.
In Tables 6 and 7, we examine the performance of the GF2-

BSE approach for different system and basis set sizes. We have
used CnH2n+2 and HF as our test systems. Note that the
performance of GF2-BSE does not seems to be dependent
strongly on the system or basis set size, and as before, the GW-
BSE and GF2-BSE perform much better than TDHF/CIS. For
these choices of molecules, CIS(D) and EOM-CC2 perform
very well, compared to EOM-CCSD, as there is no strong charge
transfer characters in these systems.

Table 7. Difference of the Lowest Singlet Energy from CIS, TDHF, CIS(D), EOM-CC2, GW-BSE, and GF2-BSE against EOM-
CCSD for Hydrogen Fluoride (HF)

state ΔCIS (eV) ΔTDHF (eV) ΔCIS(D) (eV) ΔEOM-CC2 (eV) ΔG0W0-BSE (eV) ΔGF2-BSE (eV) EOM-CCSD (eV)

cc-pVDZ 1B2 1.23 1.16 −0.20 −0.14 0.24 −0.31 ± 0.52 10.72
(0.97) (1.04) (−0.77) (0.15) (−0.28 ± 0.01) 9.20

1B1 1.23 1.16 −0.20 −0.14 0.24 −0.15 ± 0.46 10.72
1A1 0.83 0.68 −0.17 −0.12 0.15 −0.32 ± 0.33 15.61
2B1 1.67 1.60 −0.15 0.04 −0.01 −0.80 ± 0.49 24.74
2B2 1.67 1.60 −0.15 0.04 −0.01 −0.63 ± 0.44 24.74
2A1 1.20 1.00 0.21 0.20 0.17 −0.21 ± 0.36 30.59
3A1 4.08 3.79 0.51 0.89 1.22 0.75 ± 0.62 34.29
2A1 −0.82 −0.75 0.28 0.20 −0.16 1.59 ± 0.60 39.03

error 1.59 1.47 0.23 0.22 0.28 0.60 ± 0.48 0

cc-pVTZ 1B2 1.19 1.12 −0.33 −0.26 0.33 0.59 ± 0.50 10.77
(0.89) (0.96) (−0.87) (0.08) (−0.30 ± 0.01) (8.54)

1B1 1.19 1.12 −0.33 −0.26 0.33 0.75 ± 0.50 10.77
1A1 0.80 0.69 −0.25 −0.21 0.24 0.56 ± 0.46 15.31
2B1 1.44 1.37 −0.35 −0.16 0.07 0.32 ± 0.48 20.08
2B2 1.44 1.37 −0.35 −0.16 0.07 0.49 ± 0.47 20.08
2A1 0.91 0.81 −0.03 −0.01 0.12 0.57 ± 0.44 24.96
1A2 0.62 0.50 0.24 0.01 0.06 0.52 ± 0.58 27.02
3B1 0.73 0.68 −0.09 0.00 0.21 0.60 ± 0.59 27.09

error 1.04 0.96 0.25 0.13 0.18 0.55 ± 0.50 0

cc-pVQZ 1B2 1.16 1.09 −0.40 −0.34 0.42 0.75 ± 0.54 10.76
(0.81) (0.88) (−0.89) (0.03) (−0.31 ± 0.01) (8.09)

1B1 1.16 1.09 −0.40 −0.34 0.42 0.93 ± 0.55 10.76
1A1 0.75 0.67 −0.30 −0.27 0.31 0.74 ± 0.53 15.15
2B1 1.24 1.17 −0.39 −0.26 0.17 0.65 ± 0.50 18.46
2B2 1.24 1.17 −0.39 −0.26 0.17 0.83 ± 0.51 18.46
3B1 1.02 0.99 −0.34 −0.17 0.29 1.33 ± 0.58 21.80
3B2 1.02 0.99 −0.34 −0.17 0.29 1.43 ± 0.56 21.80
1A2 0.71 0.60 0.03 −0.10 0.14 0.79 ± 0.60 22.52

error 1.04 0.97 0.32 0.24 0.28 0.93 ± 0.55 0
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V. CONCLUSIONS
We have developed a time-dependent second-order Green’s
function theory to describe the response of a many-body

molecular system to an external driving force. In principle, the
framework can be combined with the stochastic resolution of
identity to reduce the scaling to O(N3) in both the weak and
strong driving fields. In the present work, we have further
introduced a linear-response approach for weak driving fields,
which allowed us to recast the equation of motion for the time-
dependent second-order Green’s function into a frequency
domain Casida-like equation (GF2-BSE).
We find that the approach provides more accurate vertical

excitation energies, compared to the CIS and TDHF, and is
competitive with CIS(D) for a broad class of molecular systems,
particularly for charge transfer excitations. Moreover, the GF2-
BSE approach provides more accurate binding energies
compared to the other methods, suggesting that the main
source of error in the GF2-BSE approach results from
underestimation/overestimation of the fundamental gaps,
implying that the approach provides a reasonably accurate
framework to describe electron−hole correlation, screening, and
exchange in molecular systems. To better illustrate these
conclusions, in Figure 1, we plot the excited-state energies
listed in the aforementioned tables versus the EOM-CCSD or
EOM-CC(2,3) results. Note that CIS(D), GF2-BSE, and GW-
BSE results are in much better agreement with the EOM-CCSD
results, compared to CIS/TDHF (the latter is not shown, but
provides similar results to CIS). Overall, GF2-BSE method
performs much better than CIS/TDHF, and for the lower

excited-state energies, it provides similar results in comparison
to CIS(D) and GW-BSE.
Given the facile route to construct a low-scaling sGF2

approach to neutral excitations, we believe GF2-BSE should be
one of the methods of choice for describing binding energies in
molecules. In addition, with corrected fundamental gaps, the
approach should also be competitive with themost sophisticated
approaches for calculating the location of low-lying excited
states as well. Future work will be devoted to a full sGF2-BSE
implementation as well as the reporting of a complete
benchmark set of results for a wide range of molecular systems.

VI. DATA AVAILABLITY
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

■ APPENDIX A. EVALUATION OF t( )ad AND
W ( )imjn

R

In this Appendix, we provide more details concerning the
evaluation of t( )ad and W ( )imjn

R appearing in Sections II and
III of the main text. The retarded self-energy in the second-order
Born approximation is given by eq 11. We have also defined

W t t( , )imjn
R

1 2 and >W t t( , )imjn 1 2 in eq 12. The retarded self-
energy given in eq 11 has two terms when Langreth rules are
employed. The first term can be evaluated at t = 0 to give

= =

=

=

<t i W G

i W i E f

i W E if E

( 0, )
d
2

( ) ( )

d
2

( )2 ( ) ( )

( ) ( )

ij
mn

imjn
R

mn

mn
imjn
R

m mn

mn
imjn
R

m m mn

ad1 1
1 1

1
1 1

(A1)

To obtain t( , )ij
ad1 at any time, we replace if(Em)δmn by

G<(t, τ = 0), such that

= =<t i W E G t( , ) ( ) ( , 0)ij
mn

imjn
R

m mn
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(A2)

Similar steps can be taken for the second term in eq 11,
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In the above, we have used the known relation for the
noninteracting GF, =<G t( 0, )mn =i E f2 ( ) ( )n mn, as
well as the fluctuation−dissipation theorem at zero temperature:

=>W i W( ) 2 Im ( ) ( )imjn imjn
R

1 1 1 (A4)

where Θ(ω1) is a step function. Taking the real part of the above
equation and using the Kramers−Kronig relationship, we obtain

Figure 1. Error of excited-state energies listed in the above tables versus
the EOM-CCSD or EOM-CC(2,3) results.
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Similarly, we can evaluate W ( )im jn
R

, appearing in the above
equations. We first Fourier transform eq 12 to obtain
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Using the noninteracting Green’s functions, we arrive at the
working expression for W ( )imjn

R in eq 22.

■ APPENDIX B. LINEAR RESPONSE REGIME
The derivation in this section closely follows the one for
TDDFT.10 We first define

= +F ad (B1)

The equation of motion for the density operator in the
molecular basis can be written as

= †i t (B2)

The unperturbed density matrix can be written in a matrix form:

=
I 0

0 0
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i
k
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y
{
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(B3)

Here, o and v indicate occupied and virtual subspace. The time-
dependent perturbation is assumed to take the following form:
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Similarly, the perturbed density is assumed to be
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+
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The equation of motion for the perturbed density then can be
obtained:

= +i t F( )t vo vo vv vo vo oo (B6)

Collecting e−iωt and e−iωt terms separately, we arrive at

+ =( )a i ai ai
( ) ( )

(B7)

+ =( )a i ai ai
( ) ( )

(B8)

The right-hand side of the above equations can be further
evaluated in the linear regime:
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Similarly, one gets
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Here, Aaibj and Baibj are defined in the main text. The matrix
representation of the above equations is the Casida equation in
the main text.
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