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A B S T R A C T

An analytical model to study the influence of the Euclidian spatial dimensionality of the medium on the transient
luminescence produced exclusively by up-conversion energy transfer interaction among randomly distributed
optical centers is developed. The model is intrinsically coherent in terms of the coordinated behavior of the
relevant states luminescence and of the macroscopic energy transfer rate, and shows agreement with expected
general trends. Its predictions indicate that, under comparable conditions, the rate of the up-conversion follows
the 1D> 2D > 3D tendency at initial times, but that this conduct reverses at some (concentration and pump
power independent) time point, resulting in a higher total up-conversion luminescence for larger dimension-
alities. The model predicts that under continuous excitation regime higher up-conversion luminescence is ex-
pected for smaller Euclidean dimensions. Finally, the study also shows that up-conversion luminescence is very
sensitive to the value of the minimum possible distance of optical centers mutual approach, Rm, especially in
low-dimensional medium, and not considering it -as traditionally occurs in the analysis of other energy transfer
processes- induces to inaccuracies in the observables description.

1. Introduction

An event of energy transfer up-conversion, ETU [1,2], occurs when
some optical center (donor) transfers excitation energy to another op-
tical center (acceptor) that is already in some excited state. The same
acceptor may undergo several times this process, which can also be
accompanied by other photophysical phenomena [1,2]. As a result of
the up-conversion process, the acceptor reaches higher excited states,
from where it can decay radiatively, emitting light that is of higher
frequency than the one (or its equivalent in energy) used to excite the
substance.

As expected, this phenomenon has many possibilities of technolo-
gical application [2–8]. For example, it has been used to map biological
processes and bio-structures; nanoparticles or other structures or sub-
stances, containing the appropriate optical centers, are introduced into
the tissue or in a biological-like system and excited with light of pe-
netrating wavelength, for example IR, which is converted by the sub-
stance into VIS or UV light, which can be detected by naked eye or with
some instruments, and thus unveiling the process or structure under
study [7,9]. Likewise, with this technique has emerged the possibility of
specific manipulation of membrane ion channels, the so called up-
conversion optogenetics [10], which opens a wide range of options for

the control of physiological and pathophysiological processes. Other
relevant examples of uses are in visible solid state lasers [11], in specific
thermometry [4,12], in display devices [13,14], and in many others in
the field of photonics, imaging, biotechnology, nanomedicine, etc. In
particular, the ETU process has potential applications in fields where
the simple energy transfer, ET, process (traditional Förster Energy
Transfer, FRET [15–17]) already had, for example, as spectroscopic rule
in biochemistry and biophysics [6,15–17]. In fact, in recent years, the
amount of experimental research about new materials and new possi-
bilities for the up-conversion uses is so overwhelming, that it has been a
subject of special issues in prestigious journals (see, for example, Ber-
gamini and Ceroni [18]).

Like any usual ET process, the general requirement for each ETU
event is that the energy gap involved in the donor transition roughly
matches that of the acceptor transition [1,2,15]. This requirement is
fulfilled by a series of optical centers combinations consisting of in-
organic ions, organic molecules, semiconductors, and composite enti-
ties [1–15,18]. Electronic transitions between states originated from f
orbitals in trivalent lanthanides, Ln3+, are among the most interested
[1,2,19]. Although f-f transitions are prohibited and, with this, of lim-
ited absorption and emission probabilities, they are very attractive from
the technological point of view; Ln3+ luminescence has relatively long

https://doi.org/10.1016/j.jphotochem.2019.111908
Received 2 March 2019; Received in revised form 20 May 2019; Accepted 3 June 2019

⁎ Corresponding author.
E-mail address: cacier.hadad@udea.edu.co (C.Z. Hadad).

Journal of Photochemistry & Photobiology A: Chemistry 382 (2019) 111908

Available online 05 June 2019
1010-6030/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10106030
https://www.elsevier.com/locate/jphotochem
https://doi.org/10.1016/j.jphotochem.2019.111908
https://doi.org/10.1016/j.jphotochem.2019.111908
mailto:cacier.hadad@udea.edu.co
https://doi.org/10.1016/j.jphotochem.2019.111908
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphotochem.2019.111908&domain=pdf


lifetimes, very narrow emission wavelength ranges (f orbitals are in-
ternal ones and their participation in bonding is quite small, so vibronic
couplings are low), and the variety of atoms in the lanthanide series,
with different dispositions of Ln3+ energy levels, and with transition
possibilities ranging from IR to UV, passing through the VIS, allows
many options for the design of materials with desired properties [19].
In addition, Ln3+ can be incorporated into many types of crystalline,
amorphous, organic and inorganic matrices, in supra-structures,
forming part of coordination compounds, etc. All this makes them very
versatile for the design of optical devices [19].

With respect to the architecture and size of optical centers host
matrices, apart from the core-shell nanometric very useful design [20],
in the last decades there has been an upswing in the synthesis of min-
iaturized materials with Euclidean dimensions different from three
(3D), such as two-dimensional (2D) sheets, plates, films, etc. [21–26],
one-dimensional (1D) wires, bars, tubes, rods, etc [27–32], with
thicknesses and diameters ranging from units to hundreds of nan-
ometers, mainly of crystalline inorganic nature. For reasons that relates
the nano form of the material with its area/volume ratio, its structural
defects, the mutual proximity of its dopant optical centers, and its
electronic structure, its luminescent properties are enhanced with re-
spect to the ones of conventional materials. Additionally, nano-sizes
and low Euclidean dimensions provide several advantages in terms of
use possibilities [21–32].

Given the even greater improvements in the methodologies of ma-
terial synthesis and analysis, and the technological advances oriented to
the miniaturization and the confinement at molecular scale, in the last
times the interest in materials and systems capable of housing or dis-
posed molecules or ions in true 1D and 2D architectures (spaces or
structures of diameter (1D) or thickness (2D) of around or less than
1 nm) is growing [33–50]. Consequently, it is valid to ask about the
possibility of having optical centers structured and/or confined in these
restricted dimensions. Indeed, ET [36–39,45–49] and even ETU
[37,38,40,41] events have been observed in true 1D and 2D archi-
tectures. In those studies it is reported that the structuring of molecules
in 1D or 2D allows the introduction of some desired luminescent
properties, or also that the confinement in true 1D or 2D introduces
improvements in the observed luminescence, and the optimization and
tuning capacity in the energy transfer efficiency [36–41,45–49].

In view of these new scenarios for photonic science and technology
of reduced dimensions, it is valid to ask: what general physical char-
acteristics would have the up-conversion luminescence originated by
energy transfer in 1D and 2D, and what difference would there be with
respect to the classic 3D case? To get a general answer, we have to set
general conditions for the studied system. Therefore, the main goal of
this paper is to study the effects of the reduction of the medium's di-
mensionality on the up-conversion luminescence caused by randomly
distributed optical centers. For this it is convenient to build a model
that relates a basic ETU scheme (without other accompanying pro-
cesses) to the dimensionality of the medium, incorporating some gen-
eral structural factor that accounts for the particularities of each
system. The sufficiently general structural factor can be the minimum
possible approach distance between two optical centers, Rm, which will
change with the nature of each luminophore and/or of the hosting
medium. It is necessary to emphasize that, precisely because it is or-
iented to the direct and simple study of the effect of dimensionality on
ETU, our model will have several approximations and, in most cases, it
is not applicable in its current version to the analysis of experimental
curves. To be applicable, it is necessary to incorporate, at least, the
energy migration process. A more complete development to be used in
experimental analysis is necessarily more complex and inconvenient for
the purposes of this study (such development is in progress and will be
published elsewhere).

Although, to our knowledge, there are no theoretical models that
describe the general influence of Euclidean dimensionality on the time
dependent up-conversion luminescence, the problem of simple ET in

restricted dimensions and geometries had already been addressed the-
oretically [51–58]. This was mainly encouraged by the fact that bio-
chemical processes occur very frequently in 2D membranes and uni-
dimensional structures, and with FRET-based techniques it is possible to
study them [9,17,51,52]. Not only this, but also due to the study of 3D
crystalline structures with 1D and 2D subdomains [56,59,60], struc-
tures with characteristics of fractals or porous media [53,54], etc. In
what follows, we will mention some models having relevant elements
for our study. One of the first models for simple ET in 2D is that of
Wolber and Hudson, who proposed a Förster-like analysis for randomly
distributed donors and acceptors in a plane, considering dipole-dipole
interaction [51]. The model was successfully applied to describe the
fluorescence of a membrane-bound donor by membrane-bound accep-
tors. Snyder and Freire developed a Monte Carlo sampling -based model
to quantitatively study the dipole-dipole ET quenching in a 2D non-
ideal mixing of lipid and protein, and the effect of excluded volume and
lattice structures on the expected transfer efficiencies [52]. The results
clearly showed the utility of energy transfer -based techniques and its
theoretical analysis to obtain organizational parameters that accurately
reflect the distribution of protein and lipid molecules within a bilayer
membrane. On the other hand, Klafter and Blumen developed an ana-
lytical model for any multipolar interaction and any dimensionality of
the medium to study more general cases of trapping and reaction pro-
cesses on fractals of any dimension, which include simple ET processes
in 1,2, and 3 dimensions. The model allows its application and exten-
sion in restricted geometries, such as, for example, different porous
structures [54], but, as indicated by Klafter and Blumen [54] and other
authors [17,57], it should be used with care so as not to misinterpret
the results about the dimensionality of the system. For its part, Vásquez
[56] applied the so called Crystal Model for analyzing the simple ET in
quasi-bidimensional structures for multipolar and exchange interac-
tions, finding that the model allows to account for the observed change,
between Na2Gd2xEu2(1-x)Ti3O10 and NaGdxEu(1-x)TiO4 systems, in the
critical optical centers concentration for the quenching of the 5D0 → 7F2
emission. Additionally, the analysis allowed to determine that in these
lanthanide-based systems the dominant interaction is of the dipole-di-
pole type.

The basic form of the Förster-like models described above for simple
ET [51,53–55] can be synthesized in an expression for the transient
intensity of the donor luminescence, I t( )D , deactivated by randomly
distributed acceptors in infinite media of dimensión =d 1, 2, 3
[17,53,55]:

= × × ( )I t I e e( ) (0)D D
kt C V R d

s kt1 ( )A d
d d

s0 (1)

where t is the time, k is the donor deactivation rate in the absence of the
acceptor (the inverse of the lifetime of the donor), CA the numerical
concentration of the acceptor, V Rd

d
0 the capacity of the medium of di-

mension d, in a radius of Förster R0; a volume, R4
3 0

3, an area, R0
2, or a

length, R2 0 [17,53,55], x( ) is the Gamma function, and s is the in-
teraction multipole.

Now, considering our main goal (described above), is the model of
Eq. (1) compatible with a theoretical Förster-like treatment for up-
conversion luminescence? How to incorporate Rm in the description of
the up-conversion luminescence? Does Rm really play an important role
for up-conversion? Wolber and Hudson model [51] gives us some in-
sight about the incorporation of Rm into a Förster-like theoretical
treatment. Additionally, we previously developed a model for up-con-
version in 3D that incorporates Rm [61,62]. However, given the ap-
proximations in its development [61], this model contains only partial
descriptions in regions where Rm is relevant (Near initial time) and is a
model not directly applicable to Euclidean dimensions different from 3.
The model developed here to answer these questions will also be based
on a general Förster-like treatment for multipolar interactions (other-
wise, the most common) and, therefore, must also account for the Eq.
(1) in the limit of its validity.
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Although the parameters used in the results and discussions section
of this paper are representative of materials containing Ln3+, the model
and conceptual conclusions to be presented will have universal validity,
and, for example, can be taken into consideration for analysis of di-
mensionality effects in systems containing organic optical centers, or in
biological systems with optical centers randomly distributed in 1D
structures, 2D membranes, or in 3D fluid media, where, depending on
the viscosity of the medium, the so called static limit [17] for ET can be
met.

2. Model

This work will be based on the simplified ETU process schematized
in Fig. 1. Two generic optical centers, i and j, of similar electronic
characteristics are initially in the intermediate state, (2), reached after
selective excitation with a laser pulse of intensity, I . Once there, optical
centers have the possibility of radiative/non-radiative intra-center
decay to any lower state (for simplicity, Fig. 1 only shows the decay to
the ground state), with rate constant k2, or of carrying out the ETU
process, with rate W r( )ij [1,53],

=W r
r

( )ij
s

ij
s (2)

where s is a parameter that can be expressed completely in terms of
spectroscopic observables or in terms of the Förster critical transfer
distance [1,63,64], rij is the distance between i and j, and =s 6, 8, 10
for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole in-
teractions, respectively [1,63–65]. After the ETU process, one of the
optical centers is in the ground state (or, more general, in a lower than
the (2) energy state) and the other one in the up-conversion state, from
which can decay radiative/non-radiatively, with rate constant k3. The
radiative route gives a photon of higher energy ( E13) respect to the
initial excitation gap ( E12).

The development of the mathematical functions that describe the
temporal evolution of the luminescence from the relevant electronic
states for ETU in 1D, 2D and 3D is carried out by: (1) formulation and
partial solution of differential equations for the temporal evolution of

the optical centers probabilities of being in the relevant states; (2)
calculation of averages for the temporal probability of being in the
intermediate state, by means of a statistical procedure based on the one
of Förster [63] and Inokuti-Hirayama [65], modified for ETU and
generalized to any material Euclidian dimension, and incorporating the
material minimum possible distance between optical centers, Rm; (3)
development of the up-conversion time-dependent luminescence and of
the macroscopic ETU rate in terms of the averaged intermediate state
probability, already found in the step (2).

In addition, the model has the following implicit considerations:

i Optical centers are randomly and homogenously distributed in the
respective structure or medium, and they are static with respect to
the quickness of energy transfer processes. This situation happens in
doped materials, bonded optical centers, or in the so called static
limit [17] in fluid medium.

ii Optical centers are of the same electronic nature, a situation that
approximately happens when optical centers are the same class of
ions, molecules, etc.

iii The initial excitation pulse, I , is short enough to bring the optical
centers involved in the process to the intermediate state (2), without
being able to populate higher energy states during the pulse dura-
tion (without any excited state absorption of pump radiation,
ESAPR).

iv To facilitate the study intended here, competitive ET processes, such
as energy migration, retro-transference of energy, among others,
will not be considered.

Even though this ETU scheme is simple, it has been observed ex-
perimentally in some materials [66–68]. It is necessary to emphasize
that this simplicity is intentional to favor an easier mathematical de-
velopment and to allow to reach in a direct way the main goal: studying
exclusively the effect of the matrix dimensionality and the importance
of the (not harmless) Rm structural parameter on the up-conversion
luminescence. Future extensions of the model with others processes,
such as energy migration [69], or mixed doping, will be published
elsewhere. They will allow the use of the model for analysis of more
realistic experimental situations.

2.1. Optical centers spatial distribution functions

Since the first studies of Förster [63], it has been widely and suc-
cessfully used, for the general case of randomly distributed optical
centers in solid (3D) matrices, the homogeneous distribution function,
in which the number of optical centers that interact with a generic one
increases proportionally with r V4 / t

2 . In this expression r4 2 is the area
of the spherical cap of radius r (measured from the generic optical
center at the origin) and Vt is the total volume of the material, which,
for convenience, can be expressed as

= =V u R u, 4
3t t3

3
3 (3)

where Rt is the total effective spherical radius of the material, and u3 is
the volume of a sphere of unit radius.

The distribution function r V4 / t
2 is normalized throughout the ra-

dial distance space, from =r 0 to = Rt. When using it to calculate the
averages of the probabilities of being in the relevant states starting from

=r 0, the slopes of the predicted curves at the origin of time are in-
finite (an approximation incorporated, for example, in Eq. (1), which is
equivalent to a macroscopic (average) energy transfer rate equals to
infinity at =t 0, which is a direct consequence of the Eq. (2) when

=r 0ij . However, two optical centers in a real material cannot reach a
mutual closest distance equal to zero, but actually the macroscopic
energy transfer rate is finite at =t 0. Therefore, taking into account all
of the above, it is clear that the homogeneous radial distribution
functions suitable for 3D ( =n 3), 2D ( =n 2), and 1D (n = 1) and

Fig. 1. Up-conversion by energy transfer process studied here. The relevant
states, (1), (2), and (3), of the generic optical centers, i and j, are shown. I is the
initial excitation pulse, k2 and k3 are intra-center decay rates (radiative and non-
radiative intra-center processes) from states (2) and (3), respectively, andW r( )ij
is the microscopic energy transfer rate between i and j (which can be from i to j
or from j to i, as indicated by the two alternative directions).
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normalized in a radial space between =r Rm (the minimum possible
distance between two optical centers) and =r Rt are:

=

= =

= =

= =

F r n

r
u R R

u n

r
u R R

u n

r
u R R

u n

( , )

4
( )

4
3

, 3

2
( )

, 2

2
( )

2, 1

t m

t m

t m

2

3
3 3 3

1

2
2 2 2

0

1
1

(4)

Which, to facilitate the next subsection algebraic manipulation and
results presentation, have been conveniently expressed in terms of un, a
volume ( =n 3), area ( =n 2), or length () of unit radius. Expressions of
Eq. (4) can be synthesized into:

=F r n nr
R R

( , )
n

t
n

m
n

1

(5)

which fulfills the condition

=F r n dr( , ) 1
R

R

m

t

(6)

2.2. Intermediate state

The temporal variation of the probability that a generic optical
center i is in the intermediate state, p t( )i

(2) , is described by the differ-
ential equation:

=
=

dp t
dt

k p t W r p t p t
( )

( ) 2 ( ) ( ) ( )i
i

j

N

ij i j

(2)

2
(2)

1

(2) (2)
t

(7)

where Nt is the total number of optical centers contained in the material
and taking =t 0 just after the pulse excitation. The partial solution of
this equation is:

=
=

p t p exp k t W r p t dt( ) (0) 2 ( ) ( )i i
j

N

ij

t

j
(2) (2)

2
1 0

(2)
t

(8)

with p (0)i
(2) the probability that a generic optical center i is in the in-

termediate state, (2), at time =t 0. It fulfils the property:

= =
= =

p N(0) (0) 1
i

N

i t
i

N

1

(2) (2)

1

(0)t t
(2)

(9)

with N (0)t
(2) the number of optical centers in the state (2) at time =t 0.

Optical centers j, with which optical centers i interact, obey an equa-
tion of the same form as Eq. (8), which is a generic equation for any
optical center. This means that p t( )i

(2) is, concatenately, function of all
distances among optical centers. However, it has been showed [70] that
the determinant dependence is only with the main distance, rij, and that
it is possible to adopt the first-order approximation:

p t p exp k t( ) (0) ( )j j
(2) (2)

2 (10)

With this expression, Eq. (8) becomes:

=
=

p t p exp k t W r p T t( ) (0) 2 ( ) (0) ( )i i
j

N

ij j
(2) (2)

2
1

(2)
t

(11)

where

=T t e
k

( ) 1 k t

2

2

(12)

To obtain the macroscopic observables, the expression for p t( )i
(2)

must be averaged over all the optical centers of the system:

=
= =

p t
N

p exp k t W r p T t¯ ( ) 1 (0) 2 ( ) (0) ( )
t i

N

i
j

N

ij j
(2)

1

(2)
2

1

(2)
t t

(13)

Considering the relationship =p N N¯ (0) (0)/t t
(2) (2) and, as indicate by

Eq. (9), eliminating terms that do not contribute to the summations, we
have:

=

=

= =

= =

p t p
N

exp k t W r T t

p e
N

e

¯ ( ) ¯ (0)
(0)

2 ( ) ( )

¯ (0) 1
(0)

t i

N

j

N

ij

k t

t i

N

j

N
W r T t

(2)
(2)

(2)
1

(0)

2
1

(0)

(2)
(2)

1

(0)

1

(0)
2 ( ) ( )

t t

t t
ij

(2) (2)

2

(2) (2)

(14)

The only statistical variable is the rij distance; this allows us to use a
method similar to the one of Förster [63], and Inokuti-Hirayama [65]

for the formulation of the = = e
N i

N
j
N W r T t1

(0) 1
(0)

1
(0) 2 ( ) ( )

t

t t ij
(2)

(2) (2)
average

in Eq. (14):

=p t p e F r n e dr¯ ( ) ¯ (0) lim lim ( , )k t
N R

R

R
W r T t

N

(2) (2)
(0)

2 ( ) ( )

(0)

t t
m

t t

2
(2)

(2)

(15)

where F r n( , ) is given by Eq. (5).
The integral in Eq. (15) is:

= =I F r n e dr n
R R

r e dr( , )g
R

R
W r T t

t
n

m
n

R

R
n

K
r2 ( ) ( ) 1

m

t

m

t
s

(16)

where Eqs. (2) and (5) have been used, and =K T t2 ( )s . Integrating by
parts and making the variable change =B K

r s , we have:

=I K
R R

B e B e B e dBg

n
s

t
n

m
n t

n
s B m

n
s B

B

B
n
s Bt m

t

m

(17)

were =Bm
K

Rms
, and =Bt

K
Rts
. Writing the integral B e dB

B

B
B

t

m n
s in terms of

the incomplete gamma function, =z a B e dB( , )
a

z B1 , specifying Bm

and Bt , and rearranging, we have:

=I R e R e
R R

K
R R

n
s

K
R

n
s

K
R

1 ,

1 ,

g
t
n

m
n

t
n

m
n

n
s

t
n

m
n

t
s

m
s

K
Rts

K
Rms

(18)

Using the equivalence

=R e R e
R R

R e
R R

R e
R R

1 (1 ) ( 1)t
n
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n

t
n
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n

t
n

t
n

m
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n
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m
n

K
Rts

K
Rms

K
Rts

K
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(19)

and rearranging:

=

+

I R e
R R R R

K n
s

K
R

R e K n
s

K
R
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1 1 ,

g
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n
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n
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n
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n

n
s

t
s
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n

K
R n

s
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s

K
Rts

m
s
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Notice that

=
R e

R R
e n

s
K
R

n
s

1
1
1

0, and 1 , 1
t
n

t
n

m
n R

R

R

t
s

R

K
Rts K

Rt
s

mn

tn

t t

(21)

Furthermore, as N (0)t
(2) increases when Rt increases, and the in-

tegral Ig in Eq. (15) is raised to N (0)t
(2) , it is convenient to use in Eq.
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(20) the equivalence (see Appendix A):

=
R R

u p N
N

1 ¯ (0)
(0)t

n
m

n
n n

t

(2)

(2) (22)

with un defined in Eq. (4), and Nn is the optical centers density (optical
center numerical concentration) in the n-dimensional material. Taking
into account Eqs. (20),(21) and (22), the double limit of Ig in Eq. (15) is:

=

+

= +

( )

I

u p N K R e K

N

exp u p N K n
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(23)

where the relationship =( ) elim 1
x

y
x

x y has been used. Specifying
=K T t2 ( )s and reordering, the final expression for the average

probability of being in the intermediate state for a material of dimen-
sion n is:

= × ×

×

( )p t p e e

e

¯ ( ) ¯ (0)n n
k t p u N n

s T t

p u N R exp T t
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n
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where the symbol for the dimension n has been now included in the
nomenclature (p t p t¯ ( ) ¯ ( )n

(2) (2) ) and T t( ) is given in Eq. (12).

Notice that =p t

p
I t
I

¯ ( )

¯ (0)
( )
(0)

n

n

n

n

(2)

(2)

(2)

(2) , where I t( )n
(2) is the intensity of the in-

termediate state luminescence at time t in a n-dimensional material, so
Eq. (24) predicts the experimental behavior. To obtain an expression in
terms of the time-dependent intermediate state optical centers density,
N t( )n

(2) , the relationship of Eq. (25) must be considered:

=N t p t N( ) ¯ ( )n
stat

n
stat

n
( ) ( ) (25)

where =stat (3), (2), (1) are the relevant states. Eq. (24) includes the
correction due to the minimum possible distance between two optical
centers, Rm, represented by the third exponential. It has influence on
the curves slopes near =t 0, so if it is desirable studying the effect of
material dimensionality on I t( )n

(2) at usual time scales, it is enough to
consider a simplistic version in which the third exponential is elimi-
nated, as a consequence of making =R 0m (classical Förster approx-
imation):

= × × ( )p t p e e¯ ( ) ¯ (0)n n
k t p u N n

s T t(2) (2) ¯ (0) 1 (2 ( ))n n s
n
s2

(2)
(26)

It is convenient for the subsequent analysis to express the effective
interaction parameters, s, in terms of the Förster critical transfer dis-
tance, R0 [1,63,64],

= k Rs
s

2 0 (27)

This allows rewrite our final expressions in terms of the average
optical centers number around a generic one, n,0, in a volume ( =n 3),
area ( =n 2) or length () of u Rn

n
0 Förster spatial capacity:

= N u Rn n n
n

,0 0 (28)

In this way, defining:

=T t e( ) 1 k t2 (29)

Eqs. (24) and (26) are, respectively:

= × ×

×

( )p t p e e

e

¯ ( ) ¯ (0)n n
k t p n

s T t

p R
R exp R

R T t n
s

R
R T t T t

(2) (2) ¯ (0) 1 (2 ( ))

¯ (0) 2 ( ) 1 1 ,2 ( ) (2 ( ))

n
n
s

n m
n

m

s

m

s n
s

2
(2) ,0

(2) ,0 0
0 0

(30)

and

= × × ( )p t p e e¯ ( ) ¯ (0)n n
k t p n

s T t(2) (2) ¯ (0) 1 (2 ( ))n
n
s2

(2) ,0 (31)

Notice that Eq. (31) has a mathematical form similar to Eq. (1), and
that under appropriate conditions it effectively reduces to Eq. (1), as
shall be.

2.3. Up-conversion state and macroscopic energy transfer rate

Eq. (32) describes the temporal variation for the probability that the
generic optical center i is in the up-conversion state:

= +
=

dp t
dt

k p t W r p t p t
( )

( ) ( ) ( ) ( )i
i

j

N

ij i j

(3)

3
(3)

1

(2) (2)
t

(32)

By using the equivalence

= =
=u R

p t
u R

N t N t1 ( ) 1 ( ) ( )
n t

n
i

N

i
stat

n t
n t

stat
n

stat

1

( ) ( ) ( )
t

(33)

(with =stat (3), (2), (1), the relevant states, and u Rn t
n the spatial ca-

pacity of the n-dimensional material, which consist in a volume, Vt , an
area, At , or a length, Lt , for =n 3, 2, or 1, respectively), and by using the
following definition for the time-dependent macroscopic (average) en-
ergy transfer rate, W t( )n

ETU ,

=
= =

W t
N t

W r p t p t( ) 1
( )

( ) ( ) ( )n
ETU

t i

N

j

N

ij i j(2)
1 1

(2) (2)
t t

(34)

differential Eq. (32) can be transformed to a one for the time-dependent
up-conversion state optical center density, N t( )(3) :

= +dN t
dt

k N t W t N t( ) ( ) ( ) ( )n
n n

ETU
n

(3)

3
(3) (2)

(35)

As =N (0) 0n
(3) , its partial solution is:

=N t e e W t N t dt( ) ( ) ( )n
k t t k t

n
ETU

n
(3)

0
(2)3 3

(36)

The macroscopic rate W t( )n
ETU can be obtaining from N t( )n

(2) , by
previously noticing that Eq. (7) can be transformed, through Eqs. (33)
and (34), to:

=dN t
dt

k N t W t N t( ) ( ) 2 ( ) ( )n
n n

ETU
n

(2)

2
(2) (2)

(37)

from where it follows that:

= +W t dlnN t
dt

k( ) 1
2

( )
n
ETU n

(2)

2
(38)

Using this expression in Eq. (36), integrating by parts and rearran-
ging:

= +( )N t N e p p t k k e e p t dt( )
2

¯ (0) ¯ ( ) ( ) ¯ ( )n
n k t

n n
k t t k t

n
(3) (2) (2)

3 2 0
(2)3 3 3

(39)

where Eq. (25) has been used. This equation shows that N t( )n
(3) can be

reached from p t¯ ( )n
(2) in any of its forms, Eq. (24),(26),(30) or (31). Due

to the complexity of the expressions for p t¯ ( )n
(2) , the integral that appears

in Eq. (39) is only of numerical solution. An analytical approach for
N t( )n

(3) , is only available when k3 and k2 values are close to each other.
On the other hand, as the macroscopic energy transfer rate,W t( )n

ETU
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(Eq. (38), is also in terms of the averaged intermediate state quantities,
it is possible to find a final expression for it. Firstly, by using Eqs. (24)
and (25), dlnN t

dt
( )n

(2)
is:

=

+

+

( )

dlnN t
dt

k p u N n
s k

n
s

e e k

p u N R e
k R

e k

p u N
R k

e
R k

e

k
k

e

p u N n
s R k

e
k

n
s

e e k

( ) ¯ (0) 1 2 (1 )

¯ (0) 2

¯ (0) 2 2 1

2 {1 }

¯ (0) 1 , 2 {1 } 2 (1 )

n
n n

s
n
s

k t n
s k t

n n m
n R k

e s

m
s

k t

n n
s

m
s

R k
e k t s

m
s

n
s

k t n
s

s k t
n
s

n n
s

m
s

k t s
n
s

k t n
s k t

(2)

2
(2)

2

1
2

(2)
2 {1 }

2
2

(2)

2

2 (1 )

2

2
2

(2)

2 2

1
2

s
m
s

k t

s
m
s

k t

2 2

2
2

2

2
2 2 2

2

2 2 2

(40)

where

=

( )d e

dt

R k
e

R k
e k

1 , {1 }

2 2 (1 )

n
s R k

k t

s

m
s

R k
e k t s

m
s

n
s

k t n
s

2

2

2 (1 )

2
2

s
ms

s
m
s

k t

2
2

2
2 2

2

has been used. Simplifying Eq. (40) and reordering:

=dlnN t
dt

k p u N T t nk
s e

n
s

n
s R

T t

( ) ¯ (0) (2 ( ))
( 1)

1

1 , 2 ( )

n n n s
n
s

k t

s

m
s

(2)

2
(2)

2
2

(41)

Therefore, Eq. (38) is:

=W t p u N T t nk
s e

n
s

n
s R

T t

( ) ¯ (0) (2 ( ))
2 ( 1)

1

1 , 2 ( )

n
ETU n n s

n
s

k t

s

m
s

(2)
2

2

(42)

By using Eqs. (12),(27),(28) and (29), a most suitable expression for
the discussion can be reached:

=W t
p T t nk

s e
n
s

n
s

R
R

T t

( )
¯ (0) (2 ( ))

2 ( 1)
1

1 , 2 ( )

n
ETU n

n
s

k t

m

s

(2)
,0 2

0

2

(43)

As named above, due to the incorporation of a finite possible
minimum distance between two optical centers, Rm, in the normalized
distribution function (Eq. (6)), the macroscopic energy transfer rate is
corrected from its classical infinite value ( =R 0m ) to a finite value
( >R 0m ) at =t 0. In effect, the limit of Eq. (42) or (43) when t 0 is:

= =W t W p u N n
s n R

p nk R
s n R

lim ( ) (0) ¯ (0)
( )

¯ (0)
( )t

n
ETU

n
ETU n n s

m
s n

n
s n

m
s n0

(2) (2)
,0 2 0

(44)

which is finite when >R 0m (and infinite when =R 0m ).

3. Results and discussion

Figs. 2 and 3 show semilogarithmic plots for the variation of
p t p¯ ( )/ ¯ (0)n n

(2) (2) ( =n 1, 2, 3) with t , in the more exact case of Eq. (30)
( >R 0m ), for typical reference values found in +Ln3 -doped amorphous
solids [61,66,67,69,70], as indicated in the respective figure caption.
An immediate general observation is that the curves clearly show the

loss of simple exponential decay for the intermediate state lumines-
cence, (2), which is a typical indicator of the energy transfer presence in
randomly distributed “static” optical centers in 3D medium. As can be
seen in the Figures, this effect would also be observed in 2D and 1D
media. To our knowledge, there are no experimental records for the
time-resolved luminescence from the energy donor or from the inter-
mediate (initially excited) state, in the specific case of ETU in 1D and
2D media. However, it has been reported loss of simple exponential
decay of the optical centers luminescence in the case of simple ET in
monodoped and co-doped low dimensional materials. For example,
non-exponential time-dependent emission were observed for: phthalic
acid intercalated in a interlayer (2D) of Zn-Al-LDH of 1.463 nm spacing;
[38] hemicyanine dye molecules located inside nanosized pores
(channel diameter of 5.5 Å) of zeolite (silicalite-1) crystal [39,71],
coumarin into aluminum silicate nanofilms (layer-to-layer distance of
1.4 nm) and deactivated by ET to cyanine [39,46], several organic dye
molecules into the channels (diameter of 7.1 Å) of zeolite L [47–49],
Gd3+ aligned in a pseudo 1D K2GdF5 structure in presence of the Eu3+

acceptor [60] etc. Therefore, our results are similar, in the discussed
sense, to these studies.

Fig. 2 shows the effect of the variation of n,0 (the average optical
centers number around a generic one within a Förster dimension, Eq.
(28). The n,0 number is a common parameter for 1D, 2D, and 3D media
that expresses the optical centers concentration, therefore, a suitable
quantity to make comparisons among these three different cases. As can

Fig. 2. Semilogarithmic plots for p t p¯ ( )/ ¯ (0)n n
(2) (2) ( =n 1, 2, 3) versus t in the

case >R 0m , Eq. (30), for = 1n,0 and = 6n,0 . =R 3.5m , =s 6, =p̄ (0) 0.3n
(2) ,

=k ms5.02
1, and =R0 16.8389 (R0 from Eq. (28), using = ×N cm5.0 103

19 3

as a reference) in all curves.

Fig. 3. Semilogarithmic plots for p t p¯ ( )/ ¯ (0)n n
(2) (2) ( =n 1, 2, 3) versus t at times

close to the origin in the case >R 0m , Eq. (30), for = 6n,0 , =R 3.5m , =s 6,
=p̄ (0) 0.3n

(2) , =k ms5.02
1, and =R0 16.8389 (R0 from Eq. (28), using

= ×N cm5.0 103
19 3 as a reference) in all curves.
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be seen, when n,0 is larger ( = 6n,0 compared with = 1n,0 in the
figure), the three respective cases, 1D, 2D, and 3D, exhibit faster de-
cays, that is, greater deactivation in time, which, again, is an expected
and typical conduct when energy transfer is present (concentration
dependence) [46,48,49,71]. The same comportment, which is not
showed here, is predicted with Eq. (30) for variations in p̄ (0)n

(2) : larger
p̄ (0)n

(2) generate faster deactivation. This is a correct behavior, because
p̄ (0)n

(2) is directly proportional to the pump power excitation pulse, and
the greater the intensity of the excitation pulse, the greater the con-
centration of active centers in the initial excited state, (2), and, there-
fore, faster the deactivation by energy transfer.

Likewise, as the optical centers are deactivated in time, the average
distance among those that remain in the state (2) increases, which
means that the energy transfer decreases (origin of the loss of simple
exponential decay), and the deactivation becomes more and more of
optical intra-center type, with rate k2, so the curves approach the simple
exponential decay behavior, as shown at later times in Fig. 2.

Now comparing the different Euclidean dimensions to each other in
the time scale and interval showed in Fig. 2, it can be observed that 3D-
distributed optical centers experiences faster deactivation than in 2D
distribution, and, in turn, in 2D faster than in 1D. However, as shows
Fig. 3, at times close to the origin the trend is the inverse: optical
centers in smaller Euclidean dimension are deactivated faster than in
larger Euclidean dimension. The curves show a crossing point between
them for each pair of compared dimensions. This conduct also is the one
predicted by Eq. (1) for the case of simple ET [17,53,55] but, to our
knowledge there is no experimental record of it.

This behavior could be explained by the fact that at the beginning
( =t 0) the probability of having optical centers closer to each other is
greater as the Euclidean dimension is smaller for the same number of
optical centers in a common R0 cavity. This means that at the beginning
the 1D material will be deactivated faster than the 2D ones, and these in
turn faster than the 3D ones. Subsequently, at later times, due to the
faster initial deactivation in the media of smaller Euclidean dimension,
and with it, faster depletion of optical centers suitable for ET interac-
tion, and also, due to the greatest number of possible directions to have
optical centers with which to interact in the case of media of greater
dimensionality, there will be greater number of optical centers at in-
termediate state with which to interact in the case of 3D with respect to
2D, and, in turn, greater in the case of 2D with respect to 1D, which
means faster deactivation, respectively.

All the above results are in line with the behavior of the time-de-
pendent macroscopic energy transfer rate, W t( )n

ETU , Eqs. (42) and (43).
For the interpretation we must not lose sight of the fact that W t( )n

ETU

reflects the averaged value for the ET interaction of a generic activated
optical center to all the others activated ones that surround it, at each
moment t (Eq. (34)), and that exactly corresponds to the p t¯ ( )n

(2) versus t
curves slope part that originates from ET (Eq. (38)). Fig. 4 shows
W t( )n

ETU v/s t for the same parameters of Fig. 3, but with the time in-
terval divided into three parts; between 0 and 0.3 μs (Fig. 4a), between
0.3 μs and 3 μs (Fig. 4b), and between 3 μs and 30 μs (Fig. 4c). As, in this
example, the optical centers concentration is high ( = 6n,0 ) and the
minimum possible distance between two optical centers is rather small
( =R 3.5m ), at =t 0 the three macroscopic energy transfer rates have
high (but finite) values; =W ms(0) 4640ETU

1
1, =W ms(0) 2411ETU

2
1,

and =W ms(0) 1002ETU
3

1 (values indicated in the left vertical axis,
Fig. 4(a), and determined with Eq. (44). Notice that the

> >W t W t W t( ) ( ) ( )ETU ETU ETU
1 2 3 trend is rapidly reversed in the next

plotted time interval, Fig. 4 (b), in accordance with the indicated in
Fig. 3. Notice also that, as an alternative to the physical interpretation
given above, the expression of Eq. (44) allows a mathematical ex-
planation of the fact that at the initial moments the deactivation by ET
is faster for smaller Euclidean dimension: by the fact of being raised to a
power of an integer greater than 1 that depends on the dimensionality
of the medium (s n), the really determining factor of the relative
magnitude of W (0)n

ETU is R R( / )m
s n

0 (correlatively R/s m
s n). As usual

for interacting optical centers by multipolar interactions >R Rm0 , then
(as s n is larger as the material dimensionality is smaller), the most
common is that, under comparable conditions, deactivation begins
faster for materials of smaller Euclidean dimensions. Finally, Fig. 4(c)
shows the last plotted time interval, when

> >W t W t W t( ) ( ) ( )ETU ETU ETU
3 2 1 . Notice that W t( )ETU

3 , W t( )ETU
2 , and

W t( )ETU
1 descends from 45, 42 and 31 ms−1, respectively, at 3 μs to

values comparable to k2, 13, 8 and 4 ms−1, respectively, at 30 μs, that
is, at fairly early times, as can be seen when comparing with a more
extended time range as showed in decay curves of Fig. 2.

On the other hand, it is interesting analyzing the effect of the

Fig. 4. Plots for W t( )n
ETU ( =n 1, 2, 3) versus t , Eq. (43), for = 6n,0 ,

=R 3.5m , =s 6, =p̄ (0) 0.3n
(2) , =k ms5.02

1, and =R0 16.8389 (R0 from Eq.
(28), using = ×N cm5.0 103

19 3 as a reference) in all curves. The time interval
(the same of Fig. 3) was divided into: (a) 0 to 0.3 μs, (b) 0.3 to 3 μs, and (c) 3 to
30 μs.
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variation of Rm at the beginning of curves. Fig. 5 shows, in the case of
2D materials as example, that when the material structure or the
characteristics of the optical centers allow that the closest possible
distance between optical centers are shorter the deactivation is faster
(higher initial macroscopic energy transfer rate ( =W ms(0) 4467ETU

2
1)

in the =R 3.0m case, with respect to =R 3.5m case
( =W ms(0) 2411ETU

2
1), and, in turn, this last one higher than the

=R 4.0m case ( =W ms(0) 1413ETU
2

1)). These results shows that the
Rm dependence incorporated in the Eq. (30) agrees with what should be
expected, and the fact of having incorporated the correction for the
normalization of the distribution functions (Eqs. (5) and (6)) in the
deduction of the Eqs. (24) and (30), adequately corrects some in-
completeness of our previous theoretical works [61,62].

Fig. 6 shows a comparison between the >R 0m (Eq. (24) or (30))
and the =R 0m (Eq. (26) or (31)) cases. Even though this example is for
2D, the 3D and 1D cases give similar conclusions. It can be observed
that both curves show the same trend; nearly coincide, running parallel
and separated by a small amount originated by the difference between
the initial slopes. The latter point is shown in the details of the behavior
at times close to the origin, which can be appreciated in the inserted
plot. It is observed that the curve with =R 0m (dashed curve) begins
with infinite slope, while the >R 0m one (full curve) with finite slope.
As the difference between the >R 0m and the =R 0m cases are rather
small at usual time scales, the simpler Eq. (26) or (31) can be used for
most analyzes (At least for the intermediated state).

By plotting Eq. (31) for different combinations of n,0 and p̄ (0)n
(2) it is

possible to show that the point of crossing between curves of different
dimensions, n, does not depend neither on the optical centers con-
centration nor on excitation pump power. Fig. 7 shows three cases of
p t p¯ ( )/ ¯ (0)n n

(2) (2) versus t in the range of intersection of the curves for
n=1 and n=3: (a) = 2n,0 and =p̄ (0) 0.3n

(2) , (b) = 2n,0 and
=p̄ (0) 0.4n

(2) , and (c) = 3n,0 and =p̄ (0) 0.3n
(2) . As showed, in the three

cases the curves for n=1 and n=3 intersect at the same point, in-
dicated by means of the vertical line. This point is 27.7 μs, which is
determined by the expression:

=t Ln n s n s1 1
2

[ (1 / )/ (1 / )]
s

n n
k
1
2

(45)

Where n and n’ are the involved different dimension numbers ( =n 3
and =n’ 1 in the example of Fig. 7). Eq. (45) (which is determined
equaling the expression of Eq. (31) for two different cases of di-
mensionality, n and n’, but keeping equal the rest of the variables)
clearly shows that the moment of intersection of the curves depends on
n, n’, s, and k2, but not on n,0 or p̄ (0)n

(2) . The point of intersection in the
case of Eq. (30) ( >R 0m ), depends additionally on the parameters Rm,
and R0, but remains independent of n,0 or p̄ (0)n

(2) .
On the other hand, Fig. 8a shows the variation of the up-conversion

luminescence, relative to the intermediate state luminescence at =t 0,
=p t

p
N t
N

¯ ( )

¯ (0)
( )
(0)

n

n

n

n

(3)

(2)

(3)

(2) (from Eq. (39), using Eq. (30) for p t¯ ( )n
(2) ), versus t for the

same parameters using in Fig. 2, but for a more reduced time interval. It
can be seen how at higher optical centers concentration ( = 6n,0 ) the
up-conversion luminescence increases faster, reaches higher maximum
values and lasts more in time with respect to lower ( = 1n,0 ) con-
centrations. In the curve for = 6n,0 , it is also possible to see how the
up-conversion luminescence at initial times (close to =t 0) increases
faster for smaller dimensions ( =n 1 faster than =n 2, and =n 2
faster than =n 3), which can also be appreciated for = 1n,0 in a
shorter time range, Fig. 8b. After the crossing among curves, the up-
conversion luminescence is higher for materials of larger Euclidean
dimensions, which is in line with the behavior for deactivation of the
intermediate state luminescence, analyzed above. Note also how, in all
cases, the final intensity for the time-resolved up-conversion lumines-
cence reaches higher maxima and extends more in time in the case of
larger dimensions. At this point, it should be clear that this behavior is
for time-resolved luminescence, and not for steady-state luminescence:
if the source of excitation is continuous, a constant number of excited
optical centers (in the intermediate state, homogeneous and randomly
distributed) will be maintained. This would mean that the number of
optical centers within Förster radius, n,0, will remains constant in time,
and if this number is the same for all the dimensions n, the probability

Fig. 5. Semilogarithmic plots for p t p¯ ( )/ ¯ (0)2
(2)

2
(2) versus t at times close to the

origin for the cases =R 4.0m , =R 3.5m and =R 3.0m (Eq. (30)). For all
curves: = 6n,0 , =s 6, =p̄ (0) 0.3n

(2) , =k ms5.02
1, and =R0 16.8389 (R0 from

Eq. (28), using = ×N cm5.0 103
19 3 as a reference).

Fig. 6. Semilogarithmic plots for p t p¯ ( )/ ¯ (0)2
(2)

2
(2) (2D materials) versus t for the

cases: >R 0m , Eq. (30) (full curve), and =R 0m , Eq. (31) (dashed curve). For
both cases = 3n,0 , =p̄ (0) 0.3n

(2) , =s 6, and =k ms5.02
1. For Eq. (30):

=R 3.5m and =R0 16.8389 (R0 from Eq. (28), using = ×N cm5.0 103
19 3 as

a reference). The inset shows details around the beginning of time.

Fig. 7. Semilogarithmic plots of p t p¯ ( )/ ¯ (0)n n
(2) (2) versus t for Eq. (31) ( =R 0m ) in

the range of intersection of the curves for n= 1 and n=3: (a) = 2n,0 and
=p̄ (0) 0.3n

(2) , (b) = 2n,0 and =p̄ (0) 0.4n
(2) , and (c) = 3n,0 and =p̄ (0) 0.3n

(2) .
For all curves =s 6 and =k ms5.02

1.
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that activated optical centers are closer to each other is greater in the

cases of smaller Euclidean dimensions, and therefore, one would expect
that higher intensities of up-conversion luminescence in steady state
regime are reached as the dimension of the material is smaller.

Finally, we must emphasize the care we must have when describing
the behavior for luminescence at initial times, and the importance of
incorporating the minimum approach distance, Rm, in the models for
time-resolved up-conversion luminescence: Fig. 8c shows the relative
up-conversion luminescence versus t for the same parameters of Fig. 8a,
but using Eq. (31) for p t¯ ( )n

(2) ) in Eq. (39), i.e., the classical Förster
=R 0m , approximation and a shorter time interval. It is possible to see

how, as a consequence of W (0)n
ETU , due to =R 0m , the up-con-

version luminescence for materials of smaller n increases much faster
than the case of Fig. 8a (case with W (0)n

ETU finite, >R 0m ), to the point
of retarding the moment of crossing between the curves (remember that
the crossing point also depends on Rm for this case of >R 0m ), and, with
it, reaching, wrongly, absolute maxima that can even be higher in the
case of smaller dimensions, with respect to cases of larger dimensions
(maximum of 1D higher than 3D and 2D, in Fig. 8c).

4. Conclusions

The analysis of results showed that the proposed model is com-
pletely coherent in itself (the behavior of intermediate state, up-con-
version state and macroscopic ETU rate, are coherent with each other)
and with what should be expected for the intermediate and up-con-
version luminescence for randomly distributed “static” optical centers
in 1D, 2D, or 3D medium.

The study allows to reveal that, in comparable conditions, the de-
activation of the intermediate state is faster for materials of lower
Euclidean dimensionality at times close to the initial ones, but that at
longer times it is faster for materials of greater dimensionality. As a
consequence of this the luminescence from the up-conversion state
grows faster for materials of lower Euclidean dimensionality at times
close to the origin (1D>2D > 3D), but this behavior reverses as time
progresses, being faster for materials of greater dimensions
(3D>2D > 1D), to the point of reaching higher global up-conversion
intensities. The proposed physical origin for this trend allows to predict
that in steady state regime the intensity of the up-conversion lumines-
cence will be higher as the dimensionality of the medium is lower.

Finally, not taking into account the effect of the minimum possible
distance of approximation between two optical centers, Rm, on the
theoretical description of the up-conversion luminescence in materials
of true 1, 2, and 3 dimensions, conducts to mistakes on its description.
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Appendix A. Deduction of Eq. (22)

The density of optical centers of the n-dimensional material, Nn, and the averaged probability of being in the intermediate state at =t 0, p̄ (0)(2) ,
are, respectively:

= =N N
u R

p N
N

, ¯ (0) (0)
n

t

n t
n

t

t

(2)
(2)

(A1)

where Nt and N (0)t
(2) are, respectively, the absolute and the initially excited total number of optical centers in the spatial capacity, u Rn t

n, of the n-

Fig. 8. Plots for =pn t

pn

Nn t

Nn

¯ (3) ( )

¯ (2) (0)

(3) ( )
(2) (0)

versus t (from Eq. (39)), using the same para-

meters of Fig. 2 and =k ms10.03
1: (a) Using Eq. (30), case >R 0m , for p t¯ ( )n

(2) ;
(b) Details at times close to the origin for case = 1n,0 of Figure (a); (c) Using
Eq. (31), case =R 0m , for p t¯ ( )n

(2) (case of wrong description).
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dimensional material. This last one can be a volume, Vt , an area, At , or a length, Lt , for =n 3, 2, or 1, respectively,
Combining the expressions in Eq. (A1):

=R N
u N p

(0)
¯ (0)t

n t

n n t

(2)

(2) (A2)

Therefore, and due that R Rt m, one of the
R R

1
tn mn terms in Eq. (20), can be written as:

=
R R R

u p N
N

1 1 ¯ (0)
(0)t

n
m

n
t
n

n n

t

(2)

(2) (A4)

which corresponds to Eq. (22).
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